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ABSTRACT:    This work deals with computer analysis  of  textured outdoor 
scenes involving grass,   trees, water and clouds.    Descriptions 
cf  texture are   formalized   from  natural   language  descriptions; 
local descriptors are obtained   from the directional and non- 
directional  components of  the  Fourier  transform power  spectrum. 
Analytic expressions are obtained   for orientation,   contrast, 
size,  spacing,  and  in periodic cases,   the  locations of texture 
elements.    These  local descriptors are defined over windows of 
various  sizes;   the choice of sizes is made by a  simple higher- 
level  program. 

The process of region growing is represented by a  sheaf- 
theoretical model which  formalizes the operation of pasting 
local structure   (over a window)   into global structure   (over a 
region).     Programs -jere  implemented which  form regions of 
similar color and similar  texture with respect  to the  local 
descriptors. 

An interpretation is made of texture gradient as distance 
grandient  in space.    A  simple world model  is described.    An 
interpretation of texture regions and  texture gradient is made 
with a simulated correspondence with the world model.    We   find 
that a problem-solving approach,   involving hypothesis-verification, 
more satisfactory  than an earlier pattern recognition effort 
fBajcsy 1970) and more crucial  to work with complex scenes  than 
in  scenes  of  polyhedra.     Geometric clues  from relative  sizes, 
texture gradients, and   interposition are  important in 
interpretation. 
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1.  I PRODUCTION 

1.1 Statement of Problem 

We intend to deal in this thesis with techniques for computer 

understanding of scenes with texture. We consider examples of outdoor 

scenes, although textured surfaces appear in almost every sort of scene, 

and we show some examples of isolated and artificial textures.  Studies 

in computer vision are motivated by a wide range of applications. Those 

involving texture include agricultural survey and analysis of earth 

resources satellite pictures.  Planetary exploration by remotely controlled 

vehicles will demand some autonomous vision because of long delay times. 

The social benefits of computer-controlled cars have been described by 

McCarthy.  Industrial robots will soon acquire vision. Texture synthesis, 

for which we feel our techniques are applicable,  is useful in computer 

aided design and computer aided art.  Interpretation of scanning electron 

microscope pictures e.g. for metallurgy may be of interest. We are also 

interested in constructing a model of human perception.  Finally, vision 

is one of the more interesting problem areas within artificial intelligence, 

and contributes to the advance in our understanding of intelligent systems. 

Without undertaking a complete review of the literature, we wauld 

like to broadly contrast the work we have done with that ol other work in 

computer vision. Several small groups have «tudied perception of polyhedra. 

Their work has been concerned with three-dimensional objects with plane, 

uniform faces. The limited success of these efforts has depended to « 

large extent upon large homogeneous areas and isolated edges. A number of 

predict Ion-vrti flea t Ion techniques have «riicn, s.,ne of which «re special 

to th« iteplc cases considered there. Others are more general and useful 

Co our work. Because of Che complexity of textured scenes, we feel that 



the prediction-verification approach  to perceptual systems  is even more 

important   for  our work. 

Some work has  been done with  image  processing,  which  is  intended 

for  improving  the  ease  of human  interpretation of  images  of  particular 

value.     [Quam,  others].    Other work has  been directed   toward crop 

identification and  other statistical  summaries  of  the earth  surface. 

These  studies  have also made  limited progress and are mentioned  in a 

survey below.    However,   there  is much room  for -'..iprovement of texture 

description,  and   those  studies  completely  ignore  scenes where  the  three- 

dimensional  character is important. 

It  should be clear what we are really after in an interpretation of 

a  scene.    The  goal   is not  only  to get a map of colored and   textured 

regions.    We are  not merely after  identification of some  image as a 

member  of a  class,     That   is, we are  not  out  to  identify  the   letter A. 

Nor  do we wish   to  identify  some  region of  the  image as  some  previously 

seen element,  although this might help us  to achieve  our goal.    We have 

in mind a  system with a  task,   to navigate,   for example, and execution of 

the  task requires understanding of the  structure of  the space portrayed 

by  the  image. 

1.2    Outline of Thesis 

In Chapter  I, after  the  statement  of our problem, we present 

a review of literature that we  think is relevant  to an analysl« 

of visual  texture.    The  literature covered   in  this  review comes   Irom three 

different  sources:     psychology,  neurophysiology and computer  science. 

By no means  is  this review exhaustive.     However, we hope  to show  the 

reader,   through  the  psychological and  neurophysiological  review, which 
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features in grouping are important, and thus justify the features that 

we use for texture description. The computer science review includes 

pattern recognition, linguistic and analytic approaches. 

In the second chapter, instead of presenting some formal 

definition of a texture, which we do not believe is possible in general, 

we describe two concrete scenes with textured and colored regions. With 

these examples, we describe our representation of texture and of a real 

scene. 

The third chapter presents the implementation of procedures 

which give us texture descriptors. We discuss operators in the spatial 

domain, that is edge and region operators. We discuss some of the 

techniques possible and problems to be encountered in extending these 

techniques to textured scenes.  Then we discuss texture descriptors 

derived in the Fourier domain.  Directionality turns out to be one of the 

most useful features, easily detectable in the Fourier domain. We find 

that the Fourier technique has many problems, and we analyze the advantages 

and limitations of these descriptors. We show how to compute the size of 

texture elements and their contrast; these analytic expressions are 

evaluated for several examples and appear quite useful. 

Chapter four describes a region growing algorithm applied to 

forming textured regions and colored regions. We present a sheaf-theoretic 

point of view which provides precise specification of conditions for 

continuity of textured or colored structures. 

Chapter five is devoted to the problem of interpretation of out- 

door scenes. We describe our earlier work using a pattern recognition 

approach to the classification of texture samples. Then we 

X 
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present an analysis of the use of texture gradient in determining the 

orientation of surfaces and relative depth. A simple world model is 

presented for outdoor scenes. A discussion is made of higher level 

procedures which make interpretation of two examples of outdoor scenes. 

This higher level program has not been implemented, but gives a good 

perscpective to evaluate the modules developed, and is the target for 

which we aimed. 
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I.3 Previous Results 

During the past five years or so, a great deal of work has been 

done In the area of computer-based visual perception, computer 

recognition, and computer Identification of visual scenes and patterns. 

Several results have been obtained In computer analysis of two- 

dimensional images, Interpreted as projections of geometrically simple 

real objects.  See particularly, Guzman (I968), Brice and Fennema (1970), 

Pingle (1969), and Falk (1970). 

Polyhedra and collections of polyhedra are recognized from single 

view projections.  First the meaningful edges are recognized, then the 

main regions and from these, finally, in combination with the world- 

model, the identification of the objects is inferred. 

Much less attention has been paid to computer analysis of two- 

dimensional pictures which depict real-world scenes. What we mean here 

are scenes such as forest, grass, water, and their combinations. The 

separate regions, formed by, say, grass and bushes, do not differ in 

contrast of light intensity, nor ir color (as both are usually green), 

but rather in their texture. 

A primary problem in texture is how we perceive a textured surface 

as uniform in a nontrlvlal way.  Intuitively speaking, there are many 

levels on which one can perceive texture.  In one situation we may look 

at the pattern showing how bricks are distributed on the wall and call 

that a texture.  In another situation we may have a closer look at the 

same wall from the same distance and see the texture of tne individual 

bricks and Ignore the texture given by the architectural structure of 

bricks. 

Flock (I965) and Freeman (I970), reporting about various 



experiments  in connection with  testing aspects of visnal  perception 

pattern into components each of which  is  in some way iuternallv 

uniform  (Uerthelmer   (1912)), 

In what   follows we shall present a  review of certain experimental 

results dealing with visual   feature detection  in animals.     The general  scheme 

of experimentation is as   follows.    The set of stimuli consists of geometric 

entities such as  slits,  edges,  bars, and corners.    Recordings are made  from 

single cells or a small number of cells  in a  sequence along the direction 

of insertion  of an electrode  in  the visual  system of animals   (mostly cats 

and monkeys).     The conclusion  is  that   there are  special  neurophvsiolog1Vfl1 

units,   identifiable  in well-defined parts  of  the brain,  capable of detecting 

motion,  orientations,  and  other  features  of  the  visual  stimuli. 

For  instance. Kuffler   (I953), placing microelectrodes near retinal 

ganglion cells of cats,   found  that certain areas  of the  retina, when stimulated 

by spots of light,  caused  the ganglion cells   to fire, while other areas 

inhibited  firing.    The shape of the excitatory areas   for retinal ganglion 

culls was a  small disk,  surrounded  by «n   inhibitory annulus   or vice versa. 

The  retinal areas,  exhibiting  the  firing,  are  known as  receptive   fi^lH,. 

Concentric receptive   fields have been  found also  in the optic nerve 

and  in  the LGN  (Lateral Geniculate Nucleus)  of cats and monkeys   (Hubel   (i960) 

and Wiesel and Hubel   (i960)).    The only difference between retinal ganglion 

cells and LGN cells  is  that  the receptive  fields  in the LGN are smaller. 

Also,   the  receptive  fields  in  the LGN of monkeys are smaller  than those  in cats. 

The concentric receptive   fields have a characteristic  temporal behavior:     If 



   

the center of the field fires for "en" responses, then the annulus fires 

for "off" responses or vice versa. 

Only spatial changes evoke responses, while homogeneous illumination, 

however strong, influences very little the firing of these units.  In 

functional terms these are "discontinuity detectors". Of course, there 

are "Ganzfeld detectors" in the retina, responsive to average brightness 

of a large region, which regulate the pupillary mechanism through the 

superior colliculus, but we are only interested in neural units that 

participate in processing patterned stimuli. 

A revolutionary discovery was the description of the relation be- 

tween receptive field geometry and the cytoarchitecture of the cortex. 

Mountcastle (1957) discovered the columnar organization of the cat's 

somatosensory cortex. This vertical modular arrangement in the somesthetic 

cortex means that units along a column perpendicular to the cortical 

surface all give rise to the same sensory discharge.  In the monkey, 

cells along one column respond to skin touch-pressure, and the 

cells along another column to joint rotation.  (Powell and 

Mountcastle, (1959))- The interesting feature of this correlation between 

cortical organization and functional organization became fully apparent in 

the findings of Hubel and Wiesel (i960, I962) in the visual cortex of the cat, 

They found Mature extractors of hierarchically increasing complexity. 

However, as one goes from the so-called simple units, having elongated 

receptive fields with antagonistic surroundings - also called slit or edge 

detectors to complex and hypercomplex units that respond to highly special 

features (like movement in a certain direction, or the end of a line), one 

notices that despite their diversity, all of these feature extractors have 
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a common characteristic:  they all respond optimally to a certain 

orientation.  In a vertical module (column) perpendicular to the cortical 

surface of the cat and the monkey (l'ubel and Wiesel i960, I962, 1968) 

there are several types of units from the simple and complex or even 

hypercomplex kind.  But in a given column, all detectors have the aame 

preferred direction.  In addition to this mapping of the orientation 

information, the retinal position is also maintained and units with 

receptive fields in neighboring retinal positions tend to lie in close 

proximity. 

Another remarkable finding by Hubel and Wiesel is the hierarchy of 

feature extraction. Each unit in the hierarchy results from the outputs 

of units of lower complexity using both excitatory and inhibitory connections. 

The simple units of slit or edge detector  type are built from the so-called 

Kuffler-units in the LGN by "summing" several adjacent Kufflcr units that 

fall on a line of a given orientation. This summation results in l narrow 

elongated receptive field having elongated elliptical excitatory (.nhibitory) 

area surrounded by an antagonistic neighborii-«od.  Such cortical units fire 

optimally for those line segment3 (slits or edge) that fall on the proper 

location on the retina and have the preferred orientation. These simple 

units are the only ones (in addition to Kuffler - units) whose receptive 

fields can be plotted by luminous dots and segregated into inhibitory and 

t^citatory areas. The complex and hypercomplex units, on the other hand, 

respond to such complex features as movement of an edge in a certain 

orientation and direction or the perpendicularity of two intersecting line 

segments.  Here it seems that the notions of straightness, orientation, 

velocity, position, parallelism, perpendicularity, abrupt ending of a line, 

8 
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corners,  and so on, appear   as   features. 

The primary visual problem, how this irforraation is used at latas: 

stages,   is still untouched. 

I.3.2    Psvchophysical Experiments Suggesting tie Existence of 
Visual  Frequency Analyzers 

In this section we give a brief survey of experiments  concerning the 

alleged existence of spatial  frequency analyzers,   located in the neural 

system of human subjects.    The set of stimuli consists of simple  line patterns 

with differing orientations,  contrast,  and spatial   frequency. 

The human subjects involved  in experiments are asked to respond to 

the  threshold contrast of the stimuli.    Certain aspects of response are used 

as arguments  for and against the existence of a  frequency analyzer  in the 

subject.    Enroth Cugel and Rubson (I966) and Campbell and Robson   (I968) 

claim  to have  found neurophysiological evidence  for a spatial  frequency 

analyzer.     Several experiments have  been done  to determine  the  properties 

(such as  the transfer   function) of the hypothetical analyzer using masking 

methods.     For example,   Pollehn and  Roehing  (1970) used   filtered  two-dimensional 

visual  noise and spatial  sinusoidal gratings.    Julesc and Stroraeyer  (1970) 

used  one-dimensional   filtered noise  to.- masking.    The noise consisted of 

vertical  strips whose amplitude «long  the  horizontal axis of a CRT monitor 

was determined by a Gaussian process.    The visibility of a sinusoidal 

grating is strongly dependent on the   frequency of the grating.    If  the grating 

frequency overlapped  the  noise band,   it was masked.     However,   the  rejection 

band had  to be at  least an octave wide  on either side   (Blakcmore and Campbell 

(I969) and Julesz   (I97I)),    The  frequency analyzers have  such a  shallow 

characteristic  that the anal  gy to Fourier analysis is rather remote. 

Historically,   the   first hint of spatial  frequency analysis was made 

9 



by Campbell and Kullkowtkl (1966) who Investigated the viiibility 

threshold of a test grating as a function of the orientation of a masking 

grating. They briefly mentioned that maximum threshold increase occurs 

when the masking and test gratings have similar geometry. That spectral 

analysis actually occurs in the visual system was suggested by Pantle and 

Sekuler (1968) using adaptation and test grat ngs of different frequencies 

and by Campbell and Robson (I968) who noted that a square grating appears 

as a sinusoidal grating until the higher harmonics reach their visibility 

thresholds. 

A recent study by Nachmias at al. (I969) showed that at the threshold 

of visibility the various spatial frequency analysers are statistically 

independent of each other (a' long as the various spectral components 

have frequency ratios in excess of $:U). The finding by Nachmias at al. 

(1969) indlcrtes Chat at threshold the phase of visual or auditory •ignals 

is not detected by the perceptual system. However, for perception above 

the threshold level, the phase inforsM« ion is uaed in higher processors. 

After all. both the impulse function and white noise have the same flat 

amplitude spectrum, but very different phase spectra. The fact that they 

are heard and seen as being very different shows that ultimately the phase 

information is utilised. 

I• JO Psvcholoalcal Studies In Pattern Croupimi 

The topic of this section is a discussion of the psychologies) 

literature on texture grouping. The grouping process depends heavily 

on criteria of similarity of items. Although it has been known for 

some time that similarity is one of the most important features of 

perceptual grouping, only recently, in  the work of Juless (19/1), 

10 

y 



B«ck  (1967), and AttnMv«   and Olson (1970), ha« it bc.n made claar 

explicitly what kloda of aUilarltlas aro affactlva In this raspaet. 

Back (1967) has studied parcaotusl urouointm producad by 

lina fi«uras.    Ha showed that tha overall oriantation »as aaaantial 

for cluatar  foraation. while «ore coa^lex properties such as ratad 

aiaiUrity or faailUiity of fituras ware irralavant.    Cxaapla:   T and 

tilted T   are .ora «l.ilar than   T   and      ^    .    However, aa a taxtuta, 

T   and tilted   T    for« a aora distinguishable texture than   T   and    -J    . 

This has been confined by Attneava and Claoo (I97O) who have dona 

•imiUr and «ore extensive study, with different  shapaa such as    L. 

J , A. v.  lines of different  laattha. and oriaotatiooa.    Oiractioralicy 

waa iaportaot  in troupiog.    We aight expect curvature to be i^ortant 

alao. but curved  lines ware group«! with atraight   linaa which had tha 

direction. 

Grouping waa dependent alao on oriantation of tha whole  usage. 

In aan ral, grouping end coapleoentary segregation  is based 00 certain 

daacriptors, SOM of Uiich represent relaUonships of alMaata of tha 

sti-ulus array to an in.ernal CartesUn reference syste«. 

lulest (1962) has studied tha cluatering probU« on randoa dot 

taxtuMs (ateraograsM).    H« described textures and predated their 

^ropertUs by speclfyini their higher order sutiatica. 

The uaual  joint probability distribution is «ft iiede^us;s 

daacrlptor m perception, eine« It doea not describe the shape of 

clusters.    There era st  least two ways to handle thia difficulty. 

(One way u to define certain inforaatton rulee  for sl^le clysters snd 

11 



paraMtrize  the« (orUnt.tlon. ccpactiMM. .tc).    Th« trouble with 

thit solution U tho «rbitniriiMs. of th« election of cluster 

psrsastsrs.)    Ths sscond wsy is to us« constructs of rsndo« gso^try. 

Novlkoff (196?) MS ths  first to .utBO«t such s solution. 

Ths clustering process is dependent on the sisiilsrity snd 

the proxl.ity of elemnts.    The steilsrity relstion is reluivlsed 

to    brightness, color, ■soastricel descriptors snd other ptrewters. 

The proxi.itv relstion is bssed on e disunce «essure.    Nonsstric 

«ulti-diaensioosl seeling techniques  'Sheperd  (l9fe), Krusksl   (196k)) 

•nd hiererchisl cluster-seeking elgorlth«s ere useful  tools  for handling 

stailerity probte«.    The asthods proposed by Sheperd end Kruskel. 

houever, ere sppropriste only for lineer or •ultilineer cases.    In e 

nonliaeer situstion en iteretive slgorith. is spplied on sasll   local 

regions in order to find en intrinsic di.eo.ion.lity (th.p.rd .nd Crroll 

(1966), ■enaet (I969). rukunag. .nd OIMO (1971)).   Applying 

«ilti-dlwn.I00.I scsliag to di.criain.tlo« of TflllL    co^osed of 

rando.   r» . 7 orr.y.. J«|.M (1971) fa^ ^ th, ^ u*orfnt fsctor. 

lor  te.ture discri.ln.tlo« «er. briehtneee ^ KtMM||M 



1.3.U    Tmxtxtf In Mschliw R>coanltlon 

H« luivt tMn •rvcral aipocts of viiual t»«tur«t. aoscly fro« th« 

point of view of pMychology and ptycltoptiy«tology.    Now, wo «hall oxaalno 

the choroctorlttlca «ml poraaoCcra of a toxtura with reipact to aoae of 

tha approachaa that hava baan uaad In aaehina racofoltion of taaturaa. 

Th« baat ravlaw paper about  tha current state of texture extraction 

technoloty ia that of Haukina  (1970).   According to his, there are four 

typaa of approachaa that have been taken to texture claaalficationt 

(1)    Spat let  frequency content,  (2) Cray level content,  b) Local thapa 

content, and (U Higher order Maaurea.    Noat of the early aachina 

uxture recogntiion «aa related to aoalyaia of aerial photographa.   Aa 

an exaaple tha work of Under la (1970) can be aentiooed.    Under it 

aaelyted picturea of aerial photographs of agricultural  landacapat aa 

wall aa of urban areaa.    for recognition purpoeet he uaad tha pmer 

apactrwa of the brightneaa function over aaaa windows of conatanc alte. 

Tbe power spectn» la eaelysed I« t»e following way:    first, two fuact lone 

ere foraed; one the energies elonp different directions; then the anerglea 

aUng different  frequencies.    r»en.  fro» these two fuoctione,  faeture 

vector« are created.   The feetures are the nuabar of paaka and the 

strwogch of the paaka in both functlooa.   Theae faeture vactora are aaad 

far . lass i fleet ion of the «ree.    He dnioguith.. four cUaaagt 

aan-aade areas (cIt lea) 

agricuUirti eras« 

a a it«la roai 

iMMraai   »^n of two reada. 

Another way of deecribUg repetitive petterna la to uaa aaae 

acatlstical  feetures of the brightness function foraiog th« pettern. 



This hat bMn used with •cm» ndvantag« in analytint biological Mtcrlal 

Lipkln «t •!• 1966, Prwltt and Nandalson (I9t3)), cloud eattorn 

claaalflcation (iMrllng and Joseph (1968)), «nd tha dUcrlalnaclon of 

strataglc and lacdcal tamots and corraln claaalflcation.    Tha atatlatlcal 

faaturot,  tluHigh aowtlao« uaoful,    *>**• «ona  llklta.    Thua tha varlanca 

of a salt and prpprr scanr  is the «aao «s that of a whit» acona with a 

unifoni dark araa.    Tha slta of conncctad araas    thiok of clouda, for 

lnstaoca> c*n taka a wid« jpstUl«    Tha niaritar of changaa  (saro crossings: 

is  inforastiva again only within a cartain contaxt, whan cosibinad with 

other  faaturaa such ss dtraction, ate.    Histograaa ara uaaful  la 

aatinatlng light distribution in tha pier jra and satting up tha thrashold 

«aluaa for aaasurauants. 

Ikapa wasuras uaad In taatura analjrala hava involvad applying a 

particular  local 'Wchad flUar** to tvary point  in tha UMga araa, and 

counting tha nuabar of points that aatch «bow sesw thrashold.    This haa 

baan appliad to tha pravioualy notad aaaaplaa of classifying biological 

Mtarlal  (Prawitt and Nsndalaoa (1966)), to cloud cUaslficatloo, and 

to targata and tarrain classifications    Hawktna 0970)).   A aora analytic 

«pproach to ahapa dascriptloo of chraBoaasaa Is tahan In tana of conic 

aactlons.   An individual chrowaas«  la dafinad aa a non-nagaii«« function 

on tha raal plana. s**l>i*ct to cartain cooatralnts on position, slta, 

orlanutlon, ate.    Udlay «C al.  {kjtb) auggastad a slapla aothod of 

■««•urtna conc«vity «nd convaalty.    tntagral gaoaatry aaaauraa    JuUi« 

(19(1)) and thalr aataoalona aaouni to calculatlog tha mMbar of occunancas 

of n-twplaa of spactally arrangad local points In all oriontatlona oaar 

tho  isMga araa. 



Nitchcd filters allow one to dascri^ pr«cclc«lly any ahop«. 

lioMOvor,  the Mtchlng procosit duo to the conpuueioo of «  UTRO 

nuabor of corrtUcloos and tha naod of hundrada of pactarna, ia rathar 

alow.    The  ■iHilarity rvladon can ba dafinad in a atraightforward 

faahion In frm» of tha thraahold valuaa. 

Stapla dascriptora auch aa coova* ty,  langth of tha bouodary/araa. 

ace, raquira anall ooaputation tfaa, but aiailarity ralatioaa baaad on 

thaaa atapla daacriptora ara not uaually aufficiaot  for aharp daciaiooa. 

Anothar aat of aiapla daacriptora haa baan auggaatad and iaplaawntad by 

Roaanfald and Thuratoo (1971).    Thay uaa,  la parallel. aavaral  local 

avaraging oparatora appllad in diffarant diractiona and on varioua aitaa 

of window».    All raaulta obtainad  froa thaaa local oparatora ara avaluatad 

and avaotually a taxtura boundary la found.    Though thia aathod fioda 

aoaa taxtura boundarlaa, tha oparatora ara too trivial lor handling 

a wida claas of raal taaturaa.    iaaidaa,  thay do not provida any daacriptlon 

of a tairtura, thay only datact tha taatura dtf farancaa. 

All tha approachaa diacuaaad abovo ara pat tarn claaaifloat ion 

tachnlquac.    Thaao tachalquaa ara not aattofactory for a daacriptlon of 

raal taaturaa for tha following raaaoaat 

(1) Nttaro claaai float loo tachol^uaa hava coocaotratad on linaar 

dacisio« procaduraa, and doMio ladapandant  fonMlatlona.    Contaat appaara 

as a aat of nu.jMrical coafficianta In a linaar function, and in tha 

choica of faaturaa.    tfa hava bat tar «odala in tanaa of context dapandant 

daemon traaa which provide a better besls for generalisation and 

leerniag. 

(2) Structure* relationshipe end aagaentation are pert of the 



desired analyais.    Wc discufs  this  further  In our enalyiis.    The point 

hes b-^un Mde repeetadly by picture  llngulits. 

PICTWE  LINGUISTIC  FORmUSM 

In whet   followi we shell  review the so-celled  linguistic epproech; 

"picture  linguists" teke es their principal eUs to enelyxe discrete 

pictures such es bubble cheaber photogrept.i, bloswdlcel  pictures of 

neurons, blood colls, end chroswsocnes, Mchine-printcd, end hand-printed 

chsrecters,  fingerprints end the  like.    The/ ergue rether convincingly 

thet such pictures cannot be  identified by seans of clessfcel  receptor/ 

cetegoriser devices.    Whet one is efter In this situation  is not Just e 

claiiKlftcjtion. but  rather an articulated  (discursive) description or 

cnpltcation. capturing the structured subperts of e picture end the 

re let Ions between thea (Miller end Shew (1966), Neresiahen (1970), 

Clowes vigro)). 

One lies to essuas thet certein pieces of inforastion have already 

been extracted  froa the picture by aeens of nonlingulstlc techniques 

texture rleaent» end  their possible structuring   Is known).    We coabine 

this prior knowledge with the dete about  the enelysed picture end  then 

"deduce" Us structural description.    The "deduction" is accoaplished by 

a araanar.    Due to the  feet thet we cannot descr be a picture  in teras 

of strinas of subplctures, phrese-stmcture graaaers cannot be used 

directly.    The rewriting rules aust ect on aore general entities such 

ae arrav«. drewlngs,   lebeled grephs    webs), aultlgrephs. etc.    Por exeaple, 

Kirsch il&k) eid Dacey (l&l) designed e gressser for two diacnsional 

languages, where the generating rulec ect on array«.  Pfelt« 

I' 



Q and Rosenfeld     1 «  '    used  for picture description the so-called web 

graroroarN   In which  the  rules act  M  labeled directed graphs.    Simply, 

In picture gramnars one  tries  to replace  the total ordering of strings 

A by a partial ordering of graph structures so that  the parsing can still 

vork. - • 

Ihe  language of the graph grammar is nothing but a collection 

Q of graphs  that can be derived   from initial graphs by iterated application 

of the  rewriting rules. 

For  Instance, one can construct a grannar for directed two- 

0 terminal  series-parallel networks or neural networks  (Pfaltc  (1970)}. 

It  is believed  that tie organisation of textured regions in scenes would 

be another promising  field of application,  particularly, when the number 

j of different  textured regions occurring in a scene is small and when 

their organisation is such that a moderate set of rewriting rules can 

do the  Job. 

0 Methodical scanning of the picture with a prescribed  system 

of rules, which may be  feasible when the variety of possible texture 

elements and their interconnections is small, becomes rapidly uneconomical 

9 where many varieties of wanted  textures may exist, embedded in a 

background containing many similar  forms which do not belong precisely 

to the  required category. 

' The  intricacy of textured picture recognition is assodated 

not only with the presence of an incredibly large number of elementary 

texture  elements,but also with the placement rules which seem to have 

extreMly complicated grammatical structure. 

17 



To sum up,   the   linguistic method  is suitable   for such classes 

of pictures  that contain a  small  number of primitive  objects.    The 

primitives have  to be   found with accuracy,  otherwise  the parsing process 

will  terminate  in misrecognition.    The  picture must  be  recursive 

in nature,   so  that a  small  number of rewriting rules can be used. 

Picture   languages are  inappropriate  in situations where  the 

numler of primitives  is   large and  the geometrical  relationships 

between  these  primitives are  random.    This  is  the case  of nost  ol   the 

scenes such as   fabrics,  aerial photographs   (large number  of primitives), 

cloud covers,  grass,   bushes   (random relationships),  shading of suiooth 

objects,   textured  surface  of three dimensional objects   (continuity), 

and  similar  natural  or artificial  scenes with strong aspects of 

repetitiveness,  continuity,  aid  regioning,  and with intricate changes 

in gray  levels af.d colors.    On the other hand, descriptions  of modes 

and  scene elements are graphs, and  there  is a broad analogy to picture 

language  in other approaches. 

ANALYTIC  FUNCTION APPROACH 

A (real  Lrfo-dimensional discrete  rectangular)  picture  is 

represented  by a  pair      < ^ x 12,  p >,    where     I      and     I      are 

non-empty  finite  intervals    of integers and    p    is an arbitrary real-valued 

function    p:     Ij x ^ -»Reals.     If    X -  Ij  x ^    is   fixed,  one can 

identity  the picture with    p. 

The definition itself is empty. We may proceed to try to 

approximate the picture function by analytic functions defined on 

subsets  of  the  image  plane.    About  the  only useful analytic  properties 

18 
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are those based on periodicity. These constraints are inspired hy 

pictures in which the regions are generated from texture elements by 

a more or less straightforward family of analytic rules. 

A sample of special cases of deterministically textured pictures 

is listed below: 

(a)  If p is spatially periodic on a connected region 

SCX, i.e., 

p(x + v,y) = p(x,y) 

p(x, y + w) = p(x,y), 

where x,y e S and    <y,w> is  the spatial period. 

and   if    p|s    cannot be extended  to a  larger connected region S'   (S c s') 

without losing  the periodicity of    pjs',   then <S,p> is called a 

periodically textured region. 

A picture decomposable into a   family of periodically  textured 

regions    {Rjl < i < k)    with spatial periods    <v  ,w > (X • U R      and 

Ri^R1  " 0' when    *■ ^ -})»   i8 called a periodically textured picture. 

Simple visual patterns,   such as a rectangle covered by a mosaic 

of squares,   triangles,  circles,  etc., are examples of periodically 

textured pictures.     Brick wall,  honey-comb herring bone and many other 

ornamental or mosaic patterns also  belong to this  class of pictures. 

Note that   in this case  only  two texture elements are  involved 

19 



(black and white squares, etc.) and the whole picture is described by 

a finite group of translations in two directions (direct product of two 

translation groups of integers modulo ^ x I2). Thus textured pictures 

of this kind can be defined in terms of their texture elements and an 

appropriate finite group of translations.  Only a small degree of 

complication arises when the textured picture is decomposable into 

periodically textured regions. 

(b)  If p is partially Reriodic (periodic in one of its arguments) 

on a connected region Sex, i.e., 

(i)  p(x + v,y) = p(x,y) (Periodic in the first coordinate) 

(11) p(x, y + w) = p(x,y) (Periodic in the second coordinate) 

where x,y e S and v (w) is the period, and if p|s 

cannot be extended to a larger connected region S' (S c s') 

without losing the partial periodicity of pjs', then 

<S,p> is called a partially periodic textured region. 

A picture decomposable into a family of spatially 

periodic textured regions [R.jl <i< k] with periods 

{vi3 or {wi}, is called a partially periodic textured 

picture. 

^  If p is Partially almost periodic on a maximal connected 

region S, we obtain a new class of analytically characterized textured 

pictures. Here "almost periodic" means: For any e > 0 there exists a 

function p': 1^ JC I -♦ R of the form 

p'(x.y) = 8^n8um(C1 .eim(ai x + V^, 

such that |p(x,y)-p'(x,y)|< e, 

20 
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-. where a,,a.eR,  0<i<n,  and  0 < j < m. 9 i'     j '       -      -     ' - J - 

The   function p'  is not periodic  in general,   though  it has periodic 

im(a.x + b.y)        ,  .•        .     i j-rc components    C.   .e     v  i j      and  the absolute difference 

r,. 

*• 
*> 

s 

© 

Ip^x + v,y + w)-p'fx,y,)I is an arbitrarily small number for a suitable 

pair <v,w>. 

Assuming  that  th3. pictures under  consideration are  composed of 

periodic,  partially periodic,   or almost periodic  textured  regions, we can 

utilize   features  like expansion of  the  picture  function    p    over a   textured 

region      S     into  periodic  orthogonal  series  such as Fourier,  Hadamard- 

Walsh etc.     la  fortunate cases  the orthogonal series-features compress 

the   information hidden in the   textured  region into a   few dominant 

components.     This  is   followed  by patteih classification  (Rosenfeld   (I962), 

Julesz   (196.?), and Bajcsy  (1970)).     If  the periodicity or repetitiveness 

is not  the most relevant aspect of the picture in question, an orthogonal 

expansion may scramble  the   information content so  that no simplification 

occurs . 

A typical case a^oears when the phase spectrum happens to be 

relevant in a Fourier expansion of a'honperiodic" picture a'd we restrict 

ourselves only to the power spectrum. Here the information content is 

not only degraded, but also mixed in such a way that the Fourier features 

are no more relevant (Lendaris and Stanley (1970)). 
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1.1+ The Contribution of This Research 

We feel that theoretical and experimental advances have been 

made in programs for understanding textured scenes. These are: 

it    A sheaf-theoretic formalism for describing textured and 

colored regions. 

2.  Symbolic structured description of textures. 

5.  Implementation of descriptors in terms of Fourier descriptors 

Analytic expression of spacing, size and contrast of texture elements, 

and their approximate location. 

k.    Forming of color regions. 

5. Forming of textured regions. 

6. Spatial interpretation of regions in terms of texture 

gradient. 

7. Description of a higher level procedure and world model for 

outdoor scenes. 
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2,  TEXTURE DESCKIPTIONS 

In this chapter we discuss qualitative description! of visual 

textures In order to suggest the corresponding Implementation in 

procedures. Our aim will not be detailed descriptions; In a Borgese 

Q story, a project to make perfect maps lead to maps the full sise of the 

countries mapped.  Instead, we want to characterize textures in a compact 

symbolic representation which suggests correspondences with our models, 

D and simpliries human communication and debugging. We feel that everyday 

texture descriptions are good models for these purposes. At a low level, 

we want to work with those descriptions to propose plausible colored and 

C textured rtgions. At a higher level, our aim is a description in object 

space, not an image space map.  Many interpretations and hypotheses shoul ' 

be in terms of objects and properties of the object space. An example is 

9 the interpretation of texture gradient In the Image M dlstunce gradient 

in space. Another Interpretation Is that overlapping regions correspond 

to foreground and background. 

23 



2.1    Exawplei of Outdoor Sceno 

In th« scan« «hown In Flgurt  I, w« find thro «iMMnct:    grass, 

water, and rocka.    Tha grass  Uaa on an approxlaataly I aval surfaca.    Tha 

rock la In front of tha watar and behind  tha graaa.    Wa do not daacrlba 

the Inege Itself, but Its Interpretations as objects.    In describing 

this scene, we emphasise  Ita aegaantatlon Into eleaenta which    re objects 

and region« In object   space.    This structural description characterises 

the relationships among objecta and reglona.    For example, a tree atands 

above the ground and In  front of  the sky.    The atructure allows us to 

talk about cosiplex acenea In terms of simple elements.    To move about, 

we must know where the grass axtende, where to walk around rocka, and 

wherr  'he water la.    These spatial relations are essential; even if we 

were able to store and recognise whole scenes, we would need e mechanlam 

to discover where we walk and what we can pick up. 

Crass, rocks and water correspond roughly to three reglona in the 

Image.    But  these simple elements «re not directly the sort of regions 

which come  from existing edge or region finding programs.    The elements 

we see are high  level abstractions which do not coincide with color or 

texture regions.     In the first approximstlon, color la the moat relevent 

feature  that  distinguishes  these regions.    However, e closer  look at the 

picture suggests  that  the color boundaries do nor correspond exactly to 

the regions we see.    Consider  the white waves near the rocks or the dark 

areas  inside the grass region.    Our texture region growing also defines 

s  set of regions.    Directionality Is  Importen  In the graaa region, yet 

that property Is not uniform over the  regl.n.    Thus  the regions oeflned 

by our texture descriptors do not coincide with  the graaa region we see. 
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Y«i ttor» It « canttnutiy av*r tht nglm la MM of UM ^ropcrtU« of 

color, «IM and dontltjr of gr«M •colh«.   Tho toct thai w IMV* tlBilor 

• «•ikt of grat« ovor ih» «4iolo HoM (MMilaot with dlfforooc dlrvciloo 

or wich dlftvrvnt celur   matmt  || pooalkU to propoM tho  Hold •• M 

ol«wnt.    Thlr coapUxity Mhat it  toprcctlcol to cttvapt to Idootlfy 

locol olMtoca with local prototypes for graat. akjr, or ootor. or to 

«ctMpt  to Idantify tha low lovol rogloM fro« our proproM. 

la a aoooad aaa^la la ripura 2 wa hava four alowata:    graaa, 

croor. claoda. aod aky.   Again, color »aparatoa tha aky, clowda, graaa, 

trunk, of trooa, cod la aow» areas, taparata* tha crowna of craoa. 

Torrura, oo tha other haad, aoparatoa tha trooa frea graaa. 

la tha obj»ct apaco daacrlptloa, tha aky aod trooa ara dlatlacc.   Ha 

could arhltrarily daflaa laaga roglooa aa dUJoiac.    Proslatty of roglooa 

of llha color la ana batla for propoalag a coMocclvity COM« trao hraachaa 

aod «wag fra^enta af thy.    Thoaa cooaoactlvltUa raflact tho ahjoct 

apaca daacrlptloa» of ir«o« •• c oioactad a^ aky aa coooactad.   Tha roglooa 

koaod go proalaicy la tho laaga ara woconnoctad aod ovarlapping.    That 

doacriptloa allowa aa laforaoca (uhlch ray aot alwaya ka raltd) that tha 

trooa ara I« front of tha aky.   Arkitrarlly daflmag dlajolot ragloot 

rojoctt thoto hypockaaoa of object tpace coMectivity and the etoclwalao 

of lateipotltioo fro« overlap. 

Alt tough tho treea ara appraaloetaly af the aaw height, aod tha 

graaa atalke ara alao rooghly of cooataat height, their apparoat alte lo 

tho laage decraaaoa toaord tho cooter reor of the plci«o.    The alao of 

tho graaa ttalka aeareat ua U the MOO aa thet of tha treea farthoet  froo 

«a.    Olboort (19>01 kaa a^kaalaed that perception rolle* hooelly oo the 



lftttrfr«t«cUMi of •yaCMatlc «arUtloii of •*•"«( •!•• «Uh !■••• 

pMlcto« (iMttir« gradtoac) •• • «•rUcio« of 4UMIK« fro» ch« obMnwr. 

Par «MI pyrpMM, ch« r«Utl«t toft* of •lownt« in tlw world It 

•uffUtoot.   AortMtflt tluit MO know Clio poolilco of UM okoorvor, tho 

grodlooK •llowo «« to dotonlM cho obooluto dltuoco of objoctt.   ffto 

MOMiraMoc of okoorvor or co«ro pooltlan and OAgl"* ««^ collbrocto« 

of tbo 1M«O dovleo (tokol (I9r0| oro oooootlol. 
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T>^U«KI toAloft» and T«muf<l lU—nti 

UM »MafU* tram fh# trvvtaut Mctlon dMKMitinit«4 • •cructural 

•ir*« nation oi  !«§•■ by Mmwauiloa into »iMMnta of objact apac«. 

«•  funhar tiruciurc INTM t«KtMr«d roglon« In tanM of toxturo olaakota 

•Mi ihoir spati«! roUtlooshtp«.    In Tablo 1 «• thaw aoaa aaaaptaa of 

toatura alaaaota and ihalr ralaciooahlM aa lhay apfoar ta objact apaca 

and  lang« tpaca. 
i 

Taacura atraanta cana>'< ba tfatanünad In laolatloo.   A aingla alaaant 

■ay ba unralata«! to tha taaiura.    Tba ralailooablpa ar« fra^uantly orly 

a^roKlaat».    la a taaturo of pabblaa, the alaa alatlarlty aay ba 

laportaat avan thcHgh tha alaaa vary aifnlfIcaatly; atlll, thara it • 

unlforatty within a  factor of 10 or no.    ttmlarltlaa of othar propartiaa 

auch aa contrast, ahapa and spatial dlatrlbutlooa aay alao ba only 

•pfrmlmf. 

In practical la^laaaatatlooa «• caa daacrlba only alapla ralatloo- 

•hlpt:     llnaar, parlodlc,  regular bui  «partodlc. cootlnuoua,  tyMMtric. 

and tha  Ilka.    Uhatrlao, ahapa daacrlptora «tat ba ralatlvaly atapla. 

Ona aay quaatlon tha affactlvonoaa of alnpla ralatlonahips and thalr 

daacrlptora;  It la roaaonabla tj thlab that a aora coapla« daacrlptloo of 

toatura aloaanta and thalr ralatlonahlpa la nacaaaary for adaquata 

daacrlftlon of taaturaa.    Tha psychological ai^rlnants cltod  In Chaptar 1 

ladlcata that huaan diffarantlatlon of toaturaa dapanda heavily on a fau 

slapla descriptors auch aa contraat and directionality, and  ignores even 

curvature  In asking texture grouplnga.    Althou^i t#e cannot eatiaata the 

ca^utattonai coaplealty of daacrlptora. uv have an Intuitive  feeling 

thai  In tataa of tlaa, or In teraa of coaplealty of airing for parallel 

ayatnaa, that slapla daacrlptora auch aa directionality are claarly prvlerred, 



Itfcil-L 

1 is of Raglon Grass Water Forest 

• 
w 

1 
w 

Taatura 
alamnca 

la«vat, bladaa 
of grass 

water waves 
traas 

(b)   fesidjgut: 
fruit traaa 

Taxtura 
alaaant 
ais« 

width:    l/k*           widely varUbla 
langth:    ?-l0 in. 

width/height: 1/2 
length:    5-20 ft. 

Spatial 
ralation- 
ships 
batwaan 
alaswnts 

dense, roughly 
parallel and 
vortical, and 
partial covering 

quite parallel 
wavea or con 
caatric circular 
wavea 

(a) vertical and 
parallal 

(b) vertical and 
parallal 
partial covering 

Color green, yellow 
or brown 

blue, dark blue 
dark green, 
ailver gray 

(a) crown of traaa 
ia green snd  the 
trunk of trees 
is dark brown. 

(b) uaffi: green, 
brown, yellow or 
rod;  uoHtfc: 
light brown 

Bouodariaa 
of alaaaats 

fussy, saooth fucty, saooth «harp, not  ssnoth 

• 

i 
M 

} 

Oao«trU 
daacription 
of alaaanta 

linear and 
directional 

linear, direct» 
lonal, con- 
centric circlea 

trunka of traea: 
linear texture 

crown* of trees: 
blob-like texture 

Cspactad 
contraat 

very low very  low tiigh (trees with sky) 
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Table   1   (Continued) 

Nainr o(  Region Sky Clouds Brick wall Pebbles 

• 

i 
4i ■ 
• 

JO 
o 

Texture 
eleaenta 

homogeneous a cloud bricks pebbles 

Texture 
elenant 
aize 

1A-2 miles width: 3-U 
length: 8-15 
inches 

width/length 
1/2 

diameter: 
1-3  inches 

Spatial 
relaticxiships 
between 
eleaentft 

homogeneous pattern 
depends on 
weather 

horizontal 
rows 

randomly 
distributed 

Color blue white, gray 
red 

gray,  red, 
brown,  yellow 

any color 

Bound a rief« 
of clcmcms 

sharp 
irregular 
horizon) 

fuzzy but 
contrasting 

sharp and 
smooth 

sharp and 
smooth 

1 1 
8. 

en 

& 

i 

Geometric 
dpjcription 
oi eleiaents 

homogeneous blob-like or 
directional 

bidirectional blob-like 

Expected 
contrast 

high low depends on 
the  back- 
ground 
low or high 

low or high, 
depending on 
the back- 
ground. 
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Tcxturccl   Uo'ion.s  .U'l  Tlifir   (h'K^iu^at ion 

In the previuus utl i m .(. illscussocl Images hi .1 part whole structure 

iccne-reglons-clctnents. I'hc re| Ions nid elemonts were primarily in object 

space.    A  texture ma .1   few   La  ers  ol   heirarchical   structure;   in 

Fig.   Ji   the  surfaces  ol   the  bricks  have .1   rough   texture.    The  regions 

formed  bv  the  bricks  are  elements  ol   the   brick  wall   texture. 

M 

■'- '...,—^j"w* OSS! ^Kl^1^^'T^rs!U-?5,,Hrr?? * 

*_•  .-Hi 

• 

IIK   textured   region   1 can  be   1   Le: tun   t   emenl    Ln a   cextured   super- 

region,  or   the   ti       11 ■       li   cnl      ly  have  micro-texture. 

Region and  edge   if id» rs  liavt   somi       icci    s       :!)   largt   li mo^eneous 

regions.    Grouping  «)l   t«;xturc elements  can  i>e  viewed as ^1  generalization 



of homogeneity, the regions of a common property correspond to the 

regions of homogeneity from a region growing operation. The related 

operation of finding discontinuity in texture properties is analogous 

to edge-finding between homogeneous regions.  Rosenfeld (1970) has 

discussed the problem of finding texture boundaries as that of finding 

gradients in the average values of statistical measures (which are 

assumed to be any suitable operator). While this is suggestive, it 

unnecessarily emphasizes statistical measures as opposed to structured 

descriptions which would be more suitable for patterned textures. 

Let us approach the question of the organization of textured regions. 

In. the simplest case, the picture to be described is partitioned into a 

disjoint covering of textured  "(»ions. 

A somewhat more complex system of regions can be described by a 

tree structure.  It may be used to represent the topological organization 

of brightness contours (Krakauer (I970)). While this may seem a great 

generalization, a tree does not well describe the system of regions 

from a number of descriptors. Even for a single descriptor, the tree is 

rigidly heirarchical.  The nodes of the representing network are used 

for regions and the arrows correspond to the spatial relationships between 

the regions.  Systems of features lead to several networks of regions. 

A single feature may give rise to a non-disjoint network of regions. 

For an operator to give disjoint regions (a partitidm) one must assume 

an equivalence relation (reflexive, symmetric, and transitive). 

Quantization would be an example leading to an equivalence relation. 

Gradient thresholding would be another example.  Selection of typical 

values, followed by thresholding within an interval, would not lead to 
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eqiiivalences, so that it would not lead to a partition. 

It is not necessary to fully expand the whole network or family 

of networks. Rather, instead of thinking of comparing several networks 

derived from different features, we use some simple hypotheses derived 

from a subnetwork of some particular network and supported by evidence 

from features which might imply another network  (which may never exist 

as such). 

We must deal with texture boundaries as well as textured regions. 

The boundary problem is dual to the grouping problem. Therefore the 

difficulties encountered in a grouping have their analogs in boundary 

detection. Take as an example the scene in Fig. 1. The objects in this 

scene (grass, water, and rocks) are separated by physical or virtual 

boundaries. Some of them are visible while others are hidden (grass covers 

the boundary between water and rocks).  In the identification process 

it is not clear whether one should follow the boundaries defined by 

individual texture elements (look at the individual straws near the rocks) 

or whether one should look for some kind of average boundary or perhaps 

keep a spatial gap between two different textures. 

Region growing operators use certain similarity criteria. These 

are applied in patching local structures into global ones. Whenever we 

meet a dissimilarity, a boundary point or segment is proposed.  In the 

first approximation, a region is formed by patching continuous structures 

over connected areas.  In this case the corresponding boundaries are also 

connected. There may also be internal, unclosed boundaries. When local 

discontinuities occur within a region, proximity criteria are used for 

bridging the gaps.  The proximity here is used as an extension of continuity. 

3U 
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o The same is true with interrupted boundaries.  Proximity and continuity 

of boundary segments suggest continuation. 

In the past it lias been customary to think of regions as a disjoint 

covering of the image. The examples in Fig. 1 and Fig. 2 have shown that 

this conception is too simple to be useful. An equally simplistic point 

of view is that boundaries of regions are always closed curves. 
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5-  PROCEDURES FOR TEXTURE DESCRIPTORS 

0 In the previous chapter we discussed the description of texture in 

,: object and image space.  In this chooter we shall specify the implementation 

of these descriptions.  Specifically, we shall study texture descriptions 

0 in the spatial domain and in the Fourier domain. Algorithms for concrete 

descriptors will also be presented. Although the descriptors will be 

derived in the Fourier domain from the power spectrum, they actually refer 

Q to textural properties in the spatial domain. 

We will find it useful to distinguish scalar, topoloeical. and 

geometric features (shape, area, size, boundary, connectivity, thinness 

0 ratio) from relational features (spatial distribution, organization, 

gradient). 

5'1 Texture Descriptor« Derived in the Spatial Domain 

0 Since descriptors refer to properties of objects represented in the 

image space, it is natural to look for operators acting directly in the 

spatial domain. The skeleton of this section is this: Procedures isolating 

the image elements, geometric description of image elements, and clustering 

of elements based on proximity and their spatial organization. 

In the process of isolating the image elements the most important 

features are the following topological properties: connectivity, continuity, 

and proximity. These properties, applied to brightness or color, are used 

in all region finders (Fenema and Bnce (1970)). Discontinuity is the 

basic property to be used in edge and line operators (Binford (1^70), 

Kueckel (1971)). Current edge and line operators are designed for de- 

tecting discontinuities between two large homogeneous regions and they do 

not operate satisfactorily on small regions. The textured elements that 

one finds in outdoor scenes are too small in size and too large in number 
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and  therefore cannot be processed usefully by any of tba above  operators. 

However,  under  poor  resolution conditions   in   the   image, where  the  texture 

elements arc  smeared   (so that   the homogeneity stands out more   than usual), 

one may be successful even with  the above mentioned operators. 

After completing the isolation of image elements  -   figures, we shall 

describe  them.    We select  those deacriptors which enable clustering, 

i.e.,  based on proximity those which will   find  the nearby elements. 

We had already a chance  to note  that color and brightness are among the 

most   important descriptors  in natural  scene-.     Image elements cannot  be 

taken separately  from their background.     In  fact,   the common background 

of  the elements   is a  strong clue   for their clustering.    The  relationship 

between the  background and color   is expressed  in terms of contrast, and 

therefore  it can be used as another descriptor. 

The descriptors corresponding  to spatial relations depend on 

proximity relations  just as cluster processes depend on proximity.    Typically, 

we want  to define colored regions by proximity,  rather than only 

connectivity.    Grass and  trees are regions  broken  into many  fragments 

defined  by connectivity.     But  other  like  legions are nearby.     This 

proximity  in space and color can be phrased as a  problem of proximity  in 

1*   dimensions,  using  the multi-entry  technique  outlined  by  Binford   in the 

Stanford Progress Report of January  1//1.    Likewise,   super regions can be 

defined  by brightness,  co.trast,  size and shape descriptors clustered 

on  the  basis of proximity.    Spatial  relations,   the  intervals between 

elements and directions of these   intervals, can be defined also among 

elements   linked  by proximity. 

As an expedient which  is  suitable  for linear textures,  one can 
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project  the elemenm  into several directions.    Each projection will 

«cttuilly be .» one-dimensional   fiinctlon «.I  «rsy levels ur color.    Since 

thin  iunction  is still   tot* complicsted  for practical  imploswntation, 

it is simplified by using a square wave approximation.    The square 

waves are described either by edge detection operators or by magnitude 

and  the distance between two consecutive zero crossings.    Since the 

distances between zero crossings are intervals  in which the approximating 

gray levels are constant,  the ttethod is called   interval analysis.    That 

technique has been used with some success to describe regular linear 

( textures  In an MIT term paper by Peter Wolfe,   (1970). 

Since the shape of a  two or three-dimensional object  in a general 

situation could be extremely complicated, we cannot hope and,  in  fact, 

we do not want  to describe  it  in detail.     Instead, complex shapes are 

decomposed into simpler ones which are   'hopefully/ easier to describe. 

A  typical example  is a tree which may be decomposed into  its trunk and 

crown, where  the trunk  is geometrically linear while the crown is blob- 

like.    In shape analysis of outdoor scenes we  find directionality among 

the most useful  features.    One can see  this Immediately In Table 1. 

Directionality, combined with  length/width ratio and  length along the 

preferred directionality make up a linear element description of shapes 

or parts of shapes.    These are all directly  implewntable descriptors. 

In ourdoor scenes, the shapes of texture element are quite important, 

while the shapes of the  important regions of object space  (sky, grass, 

trees, water^  are not very  important. 

The apparent sixe of an object In an image is not relevant  if 

considered  in Isolation.    This  fact «Ms already noted  in Pig. P.    Thrrc 



ih* apparent ilia of grata waa tha aaM aa tha apparanc alaa of ttaaa, 

located  further Iro« the obaorvor.    llo»*ovcr, »h» alao of rajtion could be 

relevant, particularly in the initial atapa of a acana analyalt whan ana 

la aaarchlng for large connected regiom.    Oeaplta the  importance of 

deacrlptora derived in the apatlal domm, we ahall not uae the« in thla 

work.    Currently available edgi flndera and region flndera are tailored 

for large hoaoganaoua regions.    In natural acenea, textured area« are 

coapoeed of aMll texture eleaanta.    Ivan to the extent that the bounder.»t 

of Mall region» are deteralned, the data atructurea require unreaaonably 

large mtmory, tinea the boundary deacrlptlona are no longer cconoaical. 

The next ttept of datcrlptlon of cleoHntt and cluaterlng elaMnta of 

tlallar direction, alaa. color, or brightaeaf, aee«   prohibitively tiM 

conatMlng and difficult  for graaa. pebblet, aand, etc.    The ona- 

diaanalonal  Interval analyala sight have aoM utility but la vary Halted; 

coablned ulth other «athoda tuch aa Fourier deacrlptlon.  Interval aaalyala 

la potentially useful. 

5.2    Toatura Detcriotert Derived   In the rouriar Doaain 

In what folloua «a ahall need toae alaMotary and wall-ka«^ notlooa 

of Fourier analytlt.    Thay will be reviewed preaantly. 

Conalder a r».al picture function of two variiblet la a Mtrlx for» 

g(x,y)( where    x   and    y   ate varlablet  froa fixed  intcrvalt of natural 

nuabert    Ij - (o,  I p^-l).    The two-di»naional dlacrate finite 

Fourier tranafora of the function   g(x,y)    la than given by 

P-I P'l 

where p - P, • P. «"d i la the uawal laagtnary unit. 



to t*<*r«l,    f(«»a)    U • coayU« funciioo. glvtn ualqiMly by ii« 

pmft ■pMtrua   f(ntm)   «Ml phat* ■^•cirua   Ptl(«»■): 

p(«ta) -   totrcrj^«,«) ♦rjlll(«,»)). 

Proa th9 «iMvatary proparctM of  ch« P^^-ur operator  It follow« 

Chat aap raal partodic fuoctloo haa a ayaaetrlc fOMrlar laa«a with raapoct 

to lha origin.    An «quallp M«II-IUIOIMI but ao—what nor* Intaraadag fact 

la that tha powor apactrua la  Invariant with raapact *o traoalatloo in 

tha apatlal doaalo, but not with raapact to rotation.   A trivial 

cooaa^uaoc« of this property la chat tha dlractlonallty of a pattaro la 

tha putura It praaarvad In tha pewar «pactnai but tha phaaa of tha trans* 

for« la not. 

If a  functl*«n la parlodlc, partially periodic, or alaoat parlodlc. 

than Ita Pourlar trani for« ceapraatat thm d*ta «(»i«idarably  without graat 

•oaa of Inforaatloo and tha relational  featurea derived fro« the Pourler 

laapa lor« a good deacrlptloo of periodic or alnoat periodic pattama. 

Aa vo have pointed out above, the power apecirua contain* the 

InfonMtlon about  the for« of a periodic picture function reatrlcted to 

a window.    The phaaa tpactru«, on  the other hand,  repreaenta by and  larpe 

the locatlonal    poaltlonal)  inforaatlon la a window. 

v« »aid also that dltactlonallty U preaerved In the power apectrua. 

This  fnct allm^ u»  to infer  ao«e iroti  »hapa propartlea.    «• are abla 

to dutlmmlsh directional and non-dfractional coapeaanta of teature. 

lor  thla reaaon.  It  I» waaful  to irawfoj» the power apectrua ftaa a 

cartealan coordinate ayataa   <n.a>   Into a polar coordinate ayatea 

<ft • >.    Then in each direction     a , one can regard    P(r, •)     aa a 
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M»nlL»(MloMl   fuNcttM   f   m (r).     ttalUrly. lor —eh (rt^iwacy    r. 

funcilon    f    t9)        I« • onr*«llaviuila«Ml   funcilon.    Thu».  ihr u»*. npit •» 

of  ei»c icRturr <lc|Wfkla In iHIt Mlhod on thn for* of tho fir of function« 

<f%(r). P,(f)>. 

Puncdon    fr(t) drtoratnos tfhntlwr chor« I« • dtrocitooct or non- 

dlroctlonal conpamnt.    if  f«netIon      ?,(•)    U fUc Uion th« corroapondlng 

toxturo t« nonatroctlOMl.    If It hn« fow di«( incu'thmi pnnlit. tlw t*Kturo 

U tftrocttonal.    One fmk Inntf« to • aonodlroctlonol iviiur«.    Two ponkn 

wndor cortotn conotralnti loo4 to • bldlroctloool loituro. 

Tho oondlroctloMl tORturo could bo hoaogonooy«, notoy or blob-llho. 

fonctloo    f (r)       dlstlngultlMt bvtwMn nolsv and blob-llho tostoro. 

The nolty tORturo corrot^ondt to «  flot oonooro function    P (r).       Mhorono 

la iho COM of tho blob-llko cantur«,  function    P (r)       will bout aow 

fh».    Tlw boMotaocom tcaturo corrooponda to an alnoot conotaat   functloa 

P (r)        for    rX)   and with a larm »alua  for    P (0).        In tho COM of 

a dlroctlonal  taaturo funcilaa    P (O       will ha«« pooka «latlar to UM 

COM of blob-llko t«Rtur«.    Tho fr«qu«ncy  in tho ■ORIMB of    ' (rMa) 

will  roughly corr««pood to tho dlttanco hotwooo two parall«! «trip««  (In 

thr COM of directlonol t«Rtiar«j «nd to tho dlstaaca botwnan two blob« In 

th« ca«« of a blob-llko toaturo. 

W« hav« »hawn th« lnt«rpr«tatlon of function   P(tp).    Haw wa worn 

to analyt« « furth«r po««lbl« int«rpr«tatlan of function    P(r).    Conaldor 

a ■onodlractlooal pattara that «pp««ra no a o»«-dl»«natonal (to tho 

particular dlroctloa) «^uar« wau« function «hown lo rig. h 
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rif. k 

*Mf UM mllniln tyatel   •(«)   ««d th» M«. for« by    f(«).   n». 

^nodi« fMcttM !■ rit. % i« mmmmi •• • OM^LUM, or   f(«)  «^ 

•(«).  ClMM 

r(«) • K«) • •(«}. 

TW rawrur  ircntfoni of r(«) 

W(«))-/(i(».ir)) •/(•(«.I)) 

• ttoc i • •(■). 

A^tylt mo oi^oo f«.e;oo of tl» »Mth   W.   .p^r, ., . e<Mm,luUo. 

la «»»•  four tor dowiin. 

imn.*) . r(«)) •   SUM i • (•lac i . ,(«)). 



Ihlt fuMClM dltpUjrMl graphically I« Man i0 rlt. 3    , 

rig. v 

It la claar that *• caa aaaaura -J .-« la th« pomr apacci 

Iro» tha fuoction P(r),  for avary dlractiooality and window alaa   «. 

Coaaa^utatly »a caa aattaaca (b«» «all. dapaada aa tha brtghtnc». ftiacdaa) 

iha «Mvalaagth    f, «t bafora and.  u adftltloa. tha alaa af   cha 

aMllaac alMMft, V.   V   «tf   |   will ba paraaacara aaaaclacad with aach 

daacrlpiloa.    KaaapU. of (»acctaaa    P(fi).    P(r)   af taatura aa^lac will 

hm praMatcd aaat.   ra alaa at aaaplaa i* * n H polata.    Tha points 

on tho    y   «Ig    h.yr  tha corraspoodinf «aluas of tha functlou    P(») «ad 

Kr) raapactlaaly.    Th. polata   • (an tha a aala) la cha graph for function 

*(•) r^raaaat tha walw. («-l)  -JL . for a . f. 2 |6.   Tha point. 
r 

(oa tha a aala) la the iraph for function of P(r) have Jutt tha 

actiMl «aluaa af fra^uaacy   r • 1 16. 
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each pair of   function« vP(»),    P(r)> will bo doocribod by •< 

poraaocon,  ItatoJ In o toblo.    tolow it tho list of the poroaotor« 

•nd thoir dmcrtptlon. 

MtfC:    Tho natural  Unguato naaas of tho texture saaplas. 

DCSCRIPTtM:    A hypothetical daicrtptloo of the saapla according to 

•<am crlcorU (thraaholda) oppliod on functions <P(cp)t    P(r)>. 

mx P(V):    Tho ■axlasl valua of    P(«). 

9m*''    l* ,uch • that r(!9mM^ " *** F^^ 

WIDTH:    Tho distance botwoon   »p fj. whore •. <   •       < «^ and 

Pfcj) - HIN P(»), the  left side with rospoct to    '(l^).    PC»2) • MIM 

f(9,)    (the right side with rospoct to P(9      ). 

DII:     If tho descriptor is directional,   first porfora s  fan filtering 

in such a way that the fan filter  is centered  in   c end then  find 
■ax 

NU Pi^.,■, • PC^JJ. n^u) and thua cospute DIR - sretg j™ .    If the 

descriptor is nondirectional then Just  find 

mx P(o.«) "^o,,,,. %„,) 

«nd coopute DIR as sbovo. 

ROi     Is tho wavelength coaputed  fro« the Mxiaal point energy. 

RO • window «Uo/ jr n       ♦ ^ f    ««x 
H :    is tho ■ jn value of function    P(9). 

v  .    is the variance of    Pi»). 

MAX P(r)j    la tho aaxlBial  valua of    P(r). 

t      :    Is such    r    that P(r      ) • Mix P(r). 

WIDTH r:    la the distance between tho center of    P(r) and the 

threshold value of the envelope of   P(r). 



Mr:     it  the mean value of    P(r). 

W i    la Che variance of.    P(r). 

v:      la the eleaenc alia,      - window ilie/widch r of ehe envelope. 

It        la   Che   spacing   between  elements. 

- window else/frequency of  Che  firac  peak. 

In Che caae of bldlrecdonal  CexCure e pair of values la listed 

for  Che   following  parameters: 

^X p(»). V^x, widch «p,  DIR and RO. 

Vf  texture names are on Che Cop of each picture displaying ehe 

orreaponding  funcdon    P^)    and    P(r).    The accual samples of Cexcure- 

Unea. wood, circle, and aand - are  in Figures  1U,  15, 20, and 21. 

The cexcure water  la a sample  fron the upper  lefc corner of Che piccure 

In Fig.   1. 

Fig. 6 and Fig. 7a display  funcdona    P(<p)    and    P(r)    of cexcures, 

pMrallel  lines and wacer,   followed by Tnble of Parameters.    For Che 

idenci flea don of parameter    v    we have uaed the directional pare of ehe 

«acer piccure.    The  filcered alternative of funcdons    Pr) and    P(y) 

fox wacer la in Fig. 7b. 
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Fig.  7a 

Fig,  7h 
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o TABLE 2 

O 

O 

NAME  
UEjicRIPTION 
MAX P(cp) 

«P 

Tniax 

WIDTH 

DIR 

RO 

M 
«P 

V 
CO 

MAX P(r) 

r 
max 

WIDTH r 

M 
r 

v 
r 

I 

V 

LINES 
MuWüDlMmöMAL 

2k2.12 

9 
1+ 

1-57 

2.9 

39-8 

1^.22 

105-2 

11 

16 

37.9 

iM 

5 

l 

WATER 
TKsNübikKüTlöNAL- 

13.5 

9 
6 

1.57 

16 

5.08 

0.61+ 

6.96 

k 

16 

^.86 

O.36J1 

.: 8 

1 

COMMENTS:  Both textures, lines and water are described by the program 

as monodirectional (they have one signficant peak in ?(«,) form, 

geometrically speaking, parallel vertical lines). That is why «    and 
max* 

DIR in both cases are the same, e.g. If/«. The contrast in the picture 

of lines is much higher than in the picture of water as indicated 

by the values of P(CD) and PCr).  The regular pattern of lines shows 

higher values of the directional component vs  the nondirectional 

component than the texture of water.  (Compare for instance the values 
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of MAX P(CD) and ^ ). The water waves are broken and thug ^  ^ 

parallel broken lines organized in random fashion. This shows up in 

the function P(r) of water texture. That is rather flat in comparison 

with P(r) of the texture of lines. 

In Fig. 8 we display a sample of grass from the scene in Fig. 1. 

The upper loft window in Fig. 8 is the original sample, the upper right 

window is its corresponding power spectrum, the lower left window is 

the power spectrum after a high pass filter and the lower right window 

is the resynthesized original picture after the high pass filter. 

This example is presented in order to demonstrate the necessity 

for separating the slow changes from the real texture pattern. The 

rationale for this is that most of the objects (texture elements) tend 

to have the same reflectivity and the lighting varies smoothly, thus 

shading in the Fourier domain generates a low frequency component. 

Functions  P(cp)  and P(r)  of textures grass. wood and canvas 

are displayed in Figs. 9a, 10a, and 11a respectively. The analyzed samples 

from grass are in Fig. 8, from wood in Fig. 15, and on canvas in Fig. 18. 

For the sake of considering the main directionality and thus to be able 

to determine i    and v we display the filtered alternatives in Fig. 9b 

for grass.  Fig. lob for wood, and Fig. lib, and He for canvas (for one 

directionality).  The table of their corresponding parameters is below: 
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V for mx DIR 

Mtl WOOD CAWAS 
OtfCtlPT« •IDIUCMOML NOWDIIiaiOmL 

'(0 5.62 u.8 

iiomtcTi 

"W H9) 4.39. 7.5> A ^oe. 8Q> 

011 O.*3.a.05> ».55 <1.57. a> 

■o <U.M. i6> e.dr <i6.8> 

•V                                ^T6 *.* 19,5 
¥»                               0-53fc 5.76 5.^6 

I20.jk 

* 3 % 
«IOTK r 16 |6 f 

Vr 0^ 8.5^ 7^ 
1 <fl.l6> 10 <16, 8> 

I e A 

1.6 

li    FUit of «11. notic« that gr«ss it describe at btdirvct tonal. 

contrary to idiat would b« axyoctad.    Tha raatoa it chat «van afcar high 

poaa filtarint. Chora la atlll aitoficaot  alow chanta lafc 

(«Mvalantch • 16) which foraa tha aacond paak.    Ona naadt to know aora 

about  tha tcaoa (lia lllualoatloo, continuity, contaat) In ordar to 

raaova thit kind of tlow chang«.    it la lapoaalbla without  (urthor 

knowtadga about tha araa to han^la thla altuatlon approprlataly, 



tWCftdM   ttm   MM  CMPCAMC    '«WMUflgUl  •   16)  *Ull   1«   UM  MM   Of   fMM 

!• undv.ircbU. in tht MM of ih» MMM IMIMT« it •» «tMatUI MM 

of lit tfoocrl^ilM. 

fttncttM P(r) la MM of groM ootf wood them •lalUritlot «blch 

•ttüMU CIMI  bock of ttm— mmmm ***• .«w «ouy. lrr«guUr bocl^rouoda. 

Oo (ho othor hand tha MOMS caatoM dlaplayt •IfaficMC pMha to low 

fr^v^acy aad dacMaalag powr la Mthar fra^MMlaa. 

for MM dotallad aMtjrMa of   f{r),    OM bat to aopaMta tbo 

dlffaMM dlMctloMlUlas.    Tbla la «bat M hava folloMd up in rifur.. 

9b. 10b aad lib «od lie. 

Tba iMt two aaaaplaa of lavtura of blob« aod Mad daaoMtrat« 

tba dlffaraaM» batwMe uoodlrMtloMl iciturag.    la flg.  12 aod 1} ara 

(MKIIOM    919)    mnd    Hr) of aaoplat of taatuM racordad la flg. 20 

«nd flg. 9t   MtptctlMljr.    Tabla ^ cMtalaa tbalr cotraspoodiog p^rmmtmr». 

Tba    f[m) la a flat function la both taniura« at to ba aapMtad. 

fit)    la tha MM of blob« haa OM «IgaflMat p»«k. wharaaa la tba MM 

of Mod    P(r)    Is apfroalMtaly flat. 
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DOCRlPrO« BLOI - LIKE 
SAND 
NOISY 

*-* 19 15 

«IBTM • 5 j 

011 2.» 205 
10 11.51 5 

% 60.2 52.8 

2.72 2.%8 

mx K») 120M 75.8 

V«K 3 6 

WIDTH r 5 jg 

* 61.70 5V.% 

Vr                                                     6.52 3.I8 

• 10 5 

v ».6 I.3 

«• aust Mk« tow coMWQCs «bout th« iIIffrriMM between 

continuoue end  finice dlecrece Fourier  crensforM.    The contlnuoue 

Pourier   (renefora exiece for every function with  finite energy, while the 

finite discrete Pourier trenefoni exlsti  for eoy function.    OIT interpreter lone 

will  be beeed on the contlnuoue trenefoni end the actual coaputetlons on the 

discrete trenefora (feet Pourier trenefoni).    The dlecrete trensfons Is 

really a Fourier series.    A continuous Pourier trensfons Is rotetlonelly 



inv«ri«nc   (except  for windowing effect«) while a diecrete  transform haa 

diatinguiahed axea along ehe coordinate axia and the diagonale.    Thus 

a direct ion«1   iaage haa a continuoua Fourier tranafonn in a verv narrow 

band, while  the diacrete tranafonn haa a narrow band tranafonn only  for 

directiona along the preferred axia.    There ia a correaponding difficulty 

in defining fan filtere which we have not aucceeded in so ving.    The 

difficulty with narrow fan filtere  la demonstrated in the  following 

exaaplo,    a line with directionality    8-22 1/2° in digitiaed  form, 

with a window aiae of   6x0 pointa.    Due to the aampling problem the 

line la repr«aented by only four pointa inatead of the deeired d points. 

The valuea of   the correepondlng poter spectrum ere  in matrix 2.    From 

inapecting the valuee in aatrix 2 it ia clear that there ia a spread 

of energies   in different directiona  besides   the expected direction 

9' - 112 1/2°.    Thia effect ia due to poor  sampling.    For «ore deteila 

aee Huang  (1970). 

MATRIX   1 f(x.y) MATRIX 2   p(n,n) 

0 (0      0 0 0 0 0 0 k 0 0 h 0 0 0 c 0 

0 0 0 0 0 0 0 1 3 1 2.6 1 1 1 1 2.6 2.6 

0 0 0 0 0 1 0 0 2 I 0 0 u 0 0 0 k 

0 0 0 1 0 0 0 c 1 2.6 I 1 2.6 2.6 1 1 2.6 
0 1 0 0 0 0 0 0 c 0 0 0 0 k 0 0 0 

0 0 0 0 0 0 0 0 -1 2.6 2.6 1 1 2.6 2.( 1 I 

0 0 0 0 0 0 0 0 -2 0 u 0 0 0 u 0 0 
0 0 0 0 0 0 0 0 -5 1 2.6 2.6 1 I   I 1 1 2.6 

-I»     -3    -2    -1    0      1      2      J 

All   the real values in K n,m) have to be divided by coefficient 6U. 
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On«  should make a note of a fairly important though elementary 

mathematical fact, namely that the Fourier transform does not preserve 

functional restriction. More specifically, if g(x,y)|w denotes the 

restriction of the iiwge function g(x,y)  to a window W  (so that 

g(x,y)  is truncated outside W), then 

F[8(x,y)|W]  - F[g(x.y)]|w 

is true for every W only when g(x,y)  is periodic with period equal 

to the size of W. Thus a Fourier image of a truncated function, ' 

truncated outside a window, will in general depend also on the part of 

the function g(x,y) whose domain is outside W. What this means 

practically is that certain texture elements could be split in half by 

windowing and as a consequence, an improper interpretation would be 

derived. This problem can be partly compensated for by overlapping windowing. 

Human perception allows us to discount smooth changes in shading. 

This fact allows us to separate shading from edges. The Fourier transform, 

on the  contrary, reflects not only edges, but also slow changes which 

are ignored in human visual perception.  Perhaps the simplest way of 

demonscrating this is by recalling the basic dictionary of the Fourier 

transform. We find that a rectangular impulse is transformed into a 

sine function, a triangular impulse into a sine2 function, and a cosine 

signal is transformed ir^o two impulses. We are accustomed to regarding 

images in terms of homogeneous regions with sharp boundaries, and to 

describe elements by brightness and color contrast and outline shape. 

In the Fourier domain, these become jumbled in a way that is only 

approximately resolved by our heuristics; thus they are not always 

usefully described. 
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In addition, the texture elements (their shape) and their 

organization are also jumbled together in the Fourier domain. So, for 

instance, dots and small segments of lines organized in parallel lined 

fashion, will be described equally as monodirectional texture. Thus 

they are not described in full details. As we said before, for more 

detail, one has to apply the spatial, local operators. 

For areas of a scene for which homogeneous regions are too small 

for use of usual edge-finding and region-growing techniques, the Fourier 

transform provides useful and compact descriptors. Many of the examples 

of textured regions showed linear texture elements, crudely aligned, 

and with roughly uniform size and spacing. These shape descriptors 

have natural counterparts in the Fourier domain. Directionality in the 

spatial domain corresponds to a directional transform, and uniform spacing 

corresponds roughly to dominant frequencies in the Fourier domain.  However, 

a much more comnon uniformity in the spatial domain, cons nt size 

elements randomly distributed, does not have a clear counterpart. There 

has been much oversimplification of the use of the frequency spectrum. 

In reality, it appears as though it has very restricted utility, however 

that utility corresponds to a few descriptors which have primary 

importance in human perception. Since most descriptors are spatial 

dffaain descriptors not directly related to the transform, frequency 

domain techniques are quite limited.  Nevertheless, the proper combination 

of the Fourier descriptor together with the spatial domain technique is 

the suggested approach for a texture identifier.  The Fourier technique 

will compactly describe large areas with repetitive features. The 

description will contain some characteristics of the shape of the elements 
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and their organization as directional opposed to nondirectional.  It 

will fail to detect some detailed description of the shapes of elements; 

as well the Fourier technique cannot be very local.  So the spatial 

technique can complement the Fourier technique, being more local and 

therefore more accurate in some sense. 

All this concerns black and white pictures.  In colored pictures, 

each point is represented by at least a three-dimensional real vector; 

the coordinates could represent either the brightness through red, 

green and blue filters (possible other filters), or their normalized 

values  (R/R + G + B,  O/R + G + B,  R/R + G + B), or perhaps the 

chomatic triple (hue, brightness, saturation). 

It appears that color ,is a local property, meaning that the color 

is determined by local contrast (with global constancy judgment). The 

Fourier transofrm is an integral operator, that mixes up different 

local properties consequently.  Direct application of the Fourier texture 

operator on an area is not useful for color in the general case, however, 

under certain constraints, one can suggest some applications of the 

Fourier operator on colored textures. 

The simplest case is when the color is constant and the texture 

is encoded in the brightness function. Examples are grass, water, brick 

wall, etc.  In this case the Fourier operator is used in the same way as 

in the black and white picture. 

The second case is when the texture is formed by only two 

alternating colors.  Here, let us assume the representation of the color 

of a point as a vector whose coordinates will contain the brightness 

of the point taken through red, green and blue filters respectively. 
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Q Since we have only two colors, clearly, the brightness functions will 

be correlated or anti-correlated with each other. Fourier analysis of 

functions could give a reasonably good description of the texture in 

O terms of the contrast of the color components. This is analogous to 

spatial domain analysis. 

This discussion points out a crucial weakness of Fourier transform 

( techniques in dealing with color. 

u 

c 

( 
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3*1 Concrete Texture Descriptors: Local Descriptors 

According to our theme, a texture is characterized by a structure 

of texture elements and their spatial distribution. Each descriptor is 

associated with a procedure and a set of geometric measures. 

The descriptors may be derived from parameters that come from the 

spatial and/or Fourier domain.  In fact, often we will have to deal 

with two different measurements of the same parameters (e.g., length, 

width, direction), one performed in the spatial domain and the other in 

the Fourier domain. Here we seek a common interpretation of these 

measurements. 

The input data from which we derive the local Fourier parameters 

is the power spectrum of the picture over every window. Since we are 

able to describe only what we measure, the technique that we Implement 

will determine the system of descriptors we can use.  In particular, the 

technique of Fourier analysis leads to the following system of descriptors: 

monodirectional, bidirectional, blob-like, homogeneous. and random.  Using 

the input data of a local area one may expect to have more than just 

one descriptor. 

Next we discuss the particular types of local descriptors we shall 

be using in our work. 

(a) Monodirectional Texture 

In the spatial domain, a monodirectional texture is approximately 

invariant along some direction.  An example of monodirectional texture 

is a system of parallel stripes.  In the Fourier domain the spectrum 

is approximately zero along the direction of near invariance, and is 

concentrated along the direction normal to that. We take this description 

65 



to be adequate for spatial domain elements with some curvature or 

superimposed on a non-directional background.  If makes sense to describe 

as directional a spectrum In which the dominant energy Is along one 

direction, and where the directional peak Is narrow. 

Next we proceed to give a qualitative description of an algorithm 

that provides monodirectional descriptors. As alluded to above, this 

algorithm is based on the assumption that the texture will show concentration 

of energy in a certain direction of the Fourier domain. Thus we want to 

find a peak in the function of energy vs angle. This function is a 

sum of energies over a fan with a certain angle y    and direction «p. 

Remember that the data structure is a matrix, and thus only four 

directionalities (horizontal, vertical, and the diagonals) coincide with 

the matrix unit invariant direction. The fan technique permits one to 

Include also the points near the investigated direction. The peaks of 

the function are defined as its local maxima, greater than the average 

value of the directional energy function. The width of a peak is defined 

as the distance between two consecutive zero crossings of the directional 

energy function minus the average value.  The algorithm used two additional 

parameters, namely, y    and  Edlr    , where the latter must be greater 

E " *A4 

or equal  to 2, while  the   former should not be greater  than      .    The 
10 

angle    y     is   the measure  of width of the  peak and   its   threshold  value 

corresponds  to  the  limit of a useful directional description.    E is 
dir 

the energy in the angular stripe (fan) and E  is the total energy.  Its 

threshold corresponds to the condition that the ratio length jjdth must 

be at least two. 
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The algorithm determining the descriptor derived In the Fourier 

domain Is given below: 

Algorithm Monodirecttonal: 
Wp/2 

(1) Forma  function    P («P)    -     5"    H**)» where WD la  the window 
r t*" I 

size. 

(2) Find  the  number    n    of peaks of the  function    Pr(»). 

(3) If    n -  1,   then check the magnitude of  the peak 

^x (Pr(q,)) - Edlr, 

and go  to step  ('♦)  else mark  the window by message:     ''There  Is more 

than one direction,  do  further analysis",  and go  to  the end. 

fU)     If    E      /   (E-E..   ) >2,     then check  the width of the  peak which v   ' dir dir' - 

corresponds  to the angular strip      y    and continue  In step  (5) else mark 

the window by  the meosage:     "There could  be blob-like  or a  noisy  texture 

i 
here,  do  further analysis",  and go to  the endf 

(5) If    Y <TT/I0,   then mark  the window:     "MonodIrectlonal  texture" 

and go to  the end else mark  the window:     "It  Is a monodIrectlonal 

texture with nondlrectlonal components" and go  to  the end. 

(6) End. 

The power spectrum along the direction of maximum power Is the 

power spectrum normal to the Invariant direction.  In the spatial 

domain humans characterize these profiles by step functions. 

In the Fourier domain we can find the approximate wave length 

of parallel strips (distance between two neighboring stripes), and 

the width of stripes from our previous analysis. One way of Identifying 

width in the spatial domain would be to use one-dlmenslonal Interval 
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«nalyiis alonR •   ilr«ctlon.    Thla technique could be uiicd also for m. 3 

prcciae locallxntioo of mmuxlirociiona!  toxturiMl OüKCH thun one car 

achieve  in the Fourier doaaln.    The Interval enalyaia «ethixl liaa not 

yet been implenanted. 

The above algorithm has been  implemented and tested on examples. 

A sample  is shown  in Fig.  Ik and Pig.  IJ. 
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In Pig. 1 .   wf l..iv.- a  texture of parallel   lines and   in Pig. 15  w« 

have a taxtu^e of parallel strips  (wood grain).    In both  figures the 

upper  left pictures show the original  textures, divided  into four 

windows  (each window is of site Ji by JR points).    The pictures in the 

upper  ■ ight corner are resynthesised  textures, produced according to 

the detcription.    The pictures  in the  lower  left corner  show the power 

apectrun of the original  textures.    Note the two different directional ities 

in the  lower quadrants of  the picture.    Here the diagonal directionality 

corresponds  to wood grain pattern and  the vertical directionality 

represents  the shading effect  (slow changes in brightness). 

(b)     Bidirectional  Texture 

The descriptor  "bidirectional" is associated with two sets of 

monodirectional  stripes, described  in the monodirectional   texture.    This 

description belongs  to  the  spatial domain and does  not have a unique 

Fourier counterpart.     In terms of  the power  function vs.  angle      P  (tp) 

it corresponds  to  two distinguished  peaks  of    P  (CD),  while  the  converse 

is  not   true. 

If  function    P  (tp)     for    tp    from    <0,Tr> has  two distinguished  peaks, 

then  it could represent at   least one  of  the  following  two cases  in  the 

picture   (its window): 

(a)     two different directional  textured  subregions are adjacent 

(are  next  to each other)   in one window,  or 

(ß)     two different directional  regions are  superimposed   (one  is 

on  the  top of the other). 

The problems discussed above are  shown in Fig.   lo and Fig.   17 and Iß 

where  the pictures  in Fig.   16 show  the case  (a) and  the picture  in 
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Pig.  17 and 16 exhibits the cat«  (|). 

» 
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Kip. 1 

Kacli ol the figures displays nine pictures whose meaning 

explainer in the table below, where the row ami column numbers refer to 

particular pictures in i i;;. h . 



Kow Column Description of Pictures  in Mf« 16 

1 1 Four windows,  where each contains horizontal 

and/or vertical stripes. 

1 2 Picture <1,1> after directional   filtering 

process,  performed  in every window separately. 

1 3 The  "complement" of    <1,2>. 

2 i The power  spectrum of <1,1>. 

p 2 The phase  spectrum of <!,!>.    Here  the phase  Is 

transformed   from the range    <-TT,TT> to <0,?TC>. 

^ 5 The absolute values of the  phase  spectrum of  the 

picture <1,1>. 

/ 1 The power spectrum of picture    <1,1>    parametrized 

by  the absolute value of  the  phase  in range <0,TT/3>. 

3 2 The  same as  in <5,I> but  this  time with range 

<rr/5. 2lT/5>. 

5 The  same as  in picture <5i2> but with range 

<2Tr/5 ,n>. 
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Fig.   I? 

Flg.   1 



The description of pictures  In Fig.   17  Is  the same as  that of 

pictures   fu Kl«.   IM,  except  in How  1  nnd Column  I, where we have   four 

windows,  each conta iuing a  superposl 1 ion uJ  liori/.Diilal  und verLie.il   ;iiie.s. 

Let us concentrate   for a moment  on the windows  oi the   first and 

third quadrant  of picture      <1,1> in Fig.   I7.    Each of the windows 

Is a composition of horizontal  line  textures and vertical  line  textures. 

It Is impossible to distinguish the cases of separate   (a)  from overlap 

(ß)  in  the power spectrum.    Using  the phase spectrum one would hope  to 

separate   the region containing the horizontal  lines  from  the region 

containing the vertical  lines,  or one would at  least hope  to be able 

to identify their positional relationships.    Unfortunately,  it  is not 

known at  present how  to carry out  the  separation.    To our knowledge,  no 

one has yet used  the phase spectrum in a meaningful way. 
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Fig.     19 



The   figures   in Fig.   19  show  the vector display of  the  complex 

function    F(n,m)     in a direction    \;   in our  case  it  is  in IiorizontaJ 

and vertical direction for each    <n,m>.    The direction of the vector is 

equal  to the phase, and  the length of the vector corresponds  to the 

value of  the power.    As one can see  from the pictures,   there is no 

evident distinctive feature which would describe the relationship Left- 

Right  or Right-Left. 

We have shown above  that in spite of the nonuniqueness of the 

representation of bidirectional  textures  in the power  spectrum, using 

decomposition techniques,  one can construct a  suitable algorithm  for 

identification purposes. 

We  shall soon give such an algorithm.    However, before we do  that, 

we want  to point out that the domain of validity of the parameters 

associated with   this descriptor  is  given by  the domain of validity  of 

the parameters used for monodirectional textures, except  that the   lower 

and  upper boundary of    d     is  now changed  from    <0,TT>    to    <Y,Tr -Y>. 

Moreover,  the peaks are defined in the  same way as was done  in the 

monodirectional algorithm. 

Bidirectional Algorithm: 

(1) Find   the  number  of peaks     (n)     of  function    P   (cp).     If 

n = 2,     then  find  the  corresponding directions    co.     and    CD       for each 

peak,  else write  the measage:     "This  is  not a  bidirectional  texture, 

do  further analysis",  and  go  to  the end. 

(2) If    9 ff/lO >Abs(cp    - to  ) >TT/lü,     then go to step   (5), 

else write  the message:     '^This  is a deformed monodirectional   texture" 

and  go to  the end. 
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(3)    Partition region    R    into  four equally large  subwindows 

R, ,  Rn,  R^, and    R. . 
J.      , j i\. 

(k)    Check each subwindow R.  for i=l 1+, whether it is a 

bidirectional textured region or not, using the algorithm "Bidirectional". 

If the answer is yes, then set MR, On, otherwise set MR Off. 
i i 

(5) If MRi are On for all i=l,... sl|  then describe the given 

window (region R) as a "bidirectional texture" and go to the end, else 

go to step (6). 

(6) If MRi are Off for all  i=l,...,U and all the subwindows 

are monodirectional, then describe the corresponding region as "Two 

monodirectional textures with different directions are adjacent" and 

go to the end, else issue the message:  "Further texture localization 

is necessary" and go to the end. 

END. 

(c)    Blob-like Texture 

This descriptor  is associated with blobs and nonlinear 

distribution.     It  should  be  noted  that  these  two components go  together 

to the effect that it   is not  sufficient  to have blobs as  texture 

elements   for inferring a  blob-like description.    For instance,  blobs on 

a grid would  show a directional  texture, and  the   'bloblikeness' will  be 

very weak. 

In  the  Fourier domain,   blobs are  represented  by a  concentric 

energy distribution.    An annulus with  the greatest energy value  is  the 

peak annulus.     In the implementation of the description  (see  the algorithm 

beluw) we approximate areas  of the  transform by circles.     The  radius  of 

the approximating circle  is   inversely proportional  to  the  radius  of  the 
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approximating circle in the spatial domain. 

It would seem logical to pass from mono- and bidirectional 

textures to tri-, tetra-, ..., n-directional textures, before turning 

to blobs. However, it is very hard to interpret these higher order 

directionalities in the spatial domain. 

The blob-like algorithm describes blobs and their nonlinear 

distribution.  It is based on the assumption that patterns which do not 

have directionality, noise, nor homogeneity, are some sort of blob-like 

textures.  In the Fourier domain this assumption corresponds to two 

conditions,  lirst,  P (cp) is constant and, second,  P (r) is not 

constant . 

Algorithm Blob-like; 

WD/2 
1.    Form functions P (cp) =     ^T-    P(r,cp)    and 

r=l 

TT 

* cp=0 

and  then compute  their respective mean values 

2        TT 
Mr        = "WF   X        P>)      and' 

cp = 0 

2 WD/2 

M =      > P   0)     , 

where WD is  the window  size. 

Next compute  their variations 
o        TT 

v
r        =Tnr    2Lrt (Pr(9)   " M )      and 

CO  =  0       1 r 

v f 5^        (P  (r)   - M )^ 
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8.     If    M^ > CN and M    > CN,   then go to step 3 else print 

the message:     "The structure  is on  the  level of the camera noise" 

and  go  to  the END. 

J.     If    vr >    CN,   then go to step 7 else print the message: 

"All energies are equally distributed  in every direction",  and  go  to 

step k . 

^'     If    vm > CN'   then 80  to  step 5  else print   the message:   "it 

is  a noisy texture" and go  to   the END. 

5. Find    Max P  (r) = P   (r       ). 
cp cp    max' 

If rmax -   2' then Print the  message:  "There is only one texture 

element"; go to step (6). 

6. Form a new discrete function l(i)  from P (r) in the 

following way: 

Assume that P (r) is a combination of sinc(r,cp) type functions. 

Find all the local maxima and all the minima of the function P (r). 
r 

For  every  local maxtium r . ,   there are  two surrounding minima     r,   . max  1 0 ü' 

r0.     such  that Pi 

r, .  < r .   < r     , where 
li max  1        2i 

1(1).     Ji        P^r). 
r =  r 

12 

If    l(i)   is a convex function,   then print the message:     "Texture elements 

are blob-like" ^nd go to step 7,  else print  the message:     "There is an 

unidentifiable  texture" and  go  to END. 

7.    Assume that P (<p)   is a combination of sine  functions.     Find all 

the  local maxima  of  the  fu"ction    P  (cp)    and  if their  number  is  greater 
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than?   ,   issue   the  message:     "lU   b] .:       ;ke   texture   has   some  directional 

features",     eise   print    the   message:     "There   it   no   blob-like   texture". 

8.     END. 

The  above  algorithm  has   been   testi   I   on    m  example   shown   in  Fig. 20 

wliich  should   be-   self-explanatory. 
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(d)     Noisy   (Random)  Texture 

The  spatial case; 

A  random distribution of dots   (pepper and  salt  pattern)   forms 

a model  of noisy  texture.     This model  describes   the   random spatial 

organization of dot  -   texture  elements  versus  periodic  or  regular 

distribution of texture elements. 

Fourier Case: 

The  texture   in  this model  corresponds  to a homogeneous 

distribution of energies   in  the  power spectrum. 

Descriptor  "noisy" is associated with certain parameters 

(obeying  some  threshold  constraints),   explained below: 

EL will denote   the ratio    of  the size  of  the  one-dot-texture 

element and  the size  of a  real  texture element.    The   inequality 

EL < WD/it  + CN    means   that a  texture element with area  of two  dots 

and WD   (window size)  of 8 x 8 points will  still be a dot-texture element, 

ED  is   the  parameter  of random distribution.     ED is  the  ratio 

of 

EM    anil    M     , where r TT 
EM = MAX    Abs(P   (co)   - M  )     and    M    =            \ p   fa) 

CD r r^ r WD        Z— rW}- 
CD   =   0 

The  value  of ED  is  set  to  be    ED < 0.1 + ON. 

CN is  the  noise  of the TV camera. 

Algoi-ithm Random: 

1.     Form  functions     P   (en),   P  (r) ,  M  ,  M  ,  v   ,  and v      as  they 
r cp r      cp      r' cp ■' 

were  described   in  the algorithm blob-like. 

2'     If    M
r < CN or M    < CN,   then write  the message:     "The  texcure 
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structure is on the TV camera noise level, check if it is a homogeneous 

texture" and go to END, else go to step 5« 

3.  If v > ED, then write the message:  "There is no random 

distribution" and go to END, else go to step h. 

k.     If v > EL, then write the message:  "There might be a blob- 

like texture" and go to END, else write the message:  "The texture is a 

randomly distributed dot pattern". 

END. 

The algorithm has been tested by an example shown in Fig. 21  . The 

picture in the left upper corner is a texture of sand; the picture in 

the right upper corner is the resynthesized image of the original, according 

to the description.  Finally, the left lower corner shows the power 

spectrum of the original. 

r. 

o 

■ 

1 0 

Fig. 21 
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(e)  Homogeneous Texture. 

A homogeneous region of uniform brightness (in black and white 

picture), color (in colored picture) forms a model of a homogeneous 

texture. 

The Fourier counterpart is represented by a Dirac function 

with its center in the zero point of the coordinate system. 

The only threshold parameter in this model is the level of 

the TV camera noise (CN). 

Algorithm Homogeneous 

1.  Form a function 

TT        WD/2 

noise (r.cp) = 2  ^>       ^> P(r,cp) - P(0,0) 

cp = 0      r = 0 

P(0,0) is also called the DC value. 

If noise (r,tp)< CN then write the message:  "The texture is homogeneous" 

else write the message:  "The texture is not homogeneous". 

END. 

An additional parameter - the average value of the intensity 

of light over a particular window is associated with every description 

of a homogeneous texture. 
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The  following table sunmarizes   the  texture descriptors we nave 

implemented: 

Q DESCRIPTORS 

Monodirectional 

Bidirectional 

* 

Jloblike 

Table g 

PARAMETERS 

DIR - direction of lines 

ww     - distance  between  two parallel   lines 

Y      - a measure of straightness  of a  line 

E
DIR/^-

E
DIR) " t 

t  - a measure of "thickness" of a line 

DIRj, DIR0 

directions of lines  1^ l^  respectively. 

ww1, ww2 - 

distances between two parallel lines in two 

different directions DD^ and DIR„. 

Yl' Y2 " 

measures of straightness of lines 1,1. 

tj, tg - measure of "thickness" of lines 

Iji 12, respectively. 

d = DIR1 - DIR^ 

Comment:  lines ^ and lg are assumed to be 

nonparallel. 

R - the distance between two texture elements in 

direction DIR. 



— 

. 

DESCRIPTORS 

Random   (Noisy) 

Homogeneous 

Table b   (Continued) 

PARAMETERS 

EL - a measure of "dotness" of the pattern. 

ED  - a measure  of random distribution 

(M    + M  )/2   -  the mean value  of  "constantly" r        cp" ' 

distributed energies. 

noise   (r,cp)   - a measure of  the degree  of variation 

of the  "homogeneous" area. 

DC  - the average   value of the  intensity of light 

over window W. 

o 
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^•     COLORED AND TEXTURED RECTONS 

In the previous chapter, we discussed procedures  for   texture descriptor; 

This chapter describes   the determination of textured and colored  regions 

and  introduce, a mathematical description,   topological sheafs,   to  formalize 

0 
the re8ion-fo™ing process.    The  texture descriptors are used  to  form 

regions with similar descriptors.    The region-growing is  low-level in 

that  it does not use the context of a world model.     It  is intended as a 

tool   for higher level routines.    The proposed regions  function as  initial 

guesses about important areas  of the image.    Thus,  the routines  favor 

large regions at the expense  of smaller regions, a sort of "law of the 

fishes",   the big ones eat  the  smaller.    Since there are   few useful 

texture descriptors and organization procedures,   this attention to   low 
< 

level modules was a necessary  focus   for our research. 

0 The   informal distinction between low-level and high-level procerses 

refers   to the  context which the process  takes   into account.    Roughly, we 

mean low-level when the context  is  local and  based on  the  image, and  by 

high-level we mean an object space  interpretation which depends  on several 

levels of abstraction and relations   (global).    We would  like a  larger 

armament of texture descriptors and   low-level organization mechanisms. 

However,   it  is  important to have a  balance between the  low-level and 

higher-level  systems,  and  to  design  for  their communication. 

We emphasize  that we use a  technique where we start  from large windows 

and   take smaller windows at boundaries.    This approach has a   limitation 

of missing  substructure.     The microscopic approach of starting   from small 

windows and   trying  to piece  together  global  structure has a  complementary 

weakness  of missing global order.    Overall, we  think  this points up the 

need   for a  range of sizes   for  local organization.    For texture, we prefer 
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our approach to the microftcopic one. 

As the scanner traverses across the picture in a television-like raster 

scan, the local texture descriptors (these descriptors might be spatial, 

or histogram, etc., in addition to those we use)over each window 

are sent to the program which detects the appearance of similarities or 

dissimilarities of the structures, over the given pair of windows. The 

knowledge of the existencr of similarities is retained together with 

locations. All the windows with similar structures are joined together 

by a two-way list which is constructed during the scanning process. The 

program also detects the break of similarities between two structures and 

gives a command to the scanner to scan with windows of smaller size. 

When two windows are joined or split apart, different texture names 

are assigned to them. Each structure associated with a window is tested 

to determine its similarity with other structures or its proper association 

with the existing similarity classes. 

Region boundaries do not usually coincide with the grid windows, and 

hence there occurs both merging of two adjacent areas, and the splitting 

of an area into at least two portions. 

In this work a set of real life and artificial pictures was scanned 

and processed by our program to demonstrate the capability of the implemented 

Fourier method. The results of testing indicate that our method is 

capable of decomposing pictures into regions, where each region corresponds 

to a different texture or color. 

In our implementation of region growers, the emphasis was on testing 

some of the ideas and not on the efficiency of programming. However, for 

illustration we present in Table 6 the average time and memory load for our 
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Q programs.    The programs have been Implemented on a  PDF-]/,  at  the 

Artificial  Intelligence  Project,  Stanford University. 

o Table 6 

O 

O 

O 

t 

NAME AND FUNCTION 
OF THE  PROGRAM 

SIZE OF THE 
PICTURE 

CPU TIME   (min) CORE   (k) 

FANAL.SAI 
FAST FOURIER TRANSFORM 
AND SEGMENTATION 

256 x 128 ^.15 39 

TEXTUR. SA I 
TEXTURE ANALYSES 
ON WINDOWS   (32  x 32) 
POINTS 

256 x 128 2.07 3h 

MIKROA.SAI 
LOCALIZATION TEXTURE 
ANALYSIS OF WINDOWS 
(8x 8) 

256 x 128 12.8 27 

TREE.'SAI 
TEXTURE REGION GROWER 

256 x  128 8.0 36 

COLOR. SA I 
COLOR REGION GROWER 192 x 128 2.0 22 
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k .1 An Algorithm for Finding Regions 

The process of localization of structures was described in detail in 

Section ^•3- Here we shall focus our attention on finding the connections 

between local structures in terma of continuity, discontinuity, and 

proximity. The actual job to this effect is carried out by a region grower 

that we shall describe momentarily. The region grower can be used both for 

continuous textured regions and continuous colored regions. The algorithms 

for our region grower use  the principle of local constancy whose content 

is summarized in the phrase:  "Unite connected locally similar areas into 

one global one." Our algorithm uses the notion of a cell which is nothing 

but an a hitrary window of the smallest possible size, carrying meaningful 

Information. 

Algorithm "Region Finder" 

1. Set regional index 1  to 1 and produce a mark R . 

2. Take the first untested cell and call it the first pilot cell 

(which thereby is also a pilot cell). 

5.  Set XSIDE to be RIGHT SIDE, YSIDE to be LEFT SIDE, and XADJ to be 

RIGHT ADJACENT. 

k.     If the pilot cell has been tested for its XADJ cell, then go to 

step 8, otherwise mark the pilot cell by a mark signifying the. fact that it 

has been tested on its XSIDE, and continue in step 5» 

5. Find the next XADJ cell. Ask whether this new cell does not exceed 

the size of the picture and has not been tested on its YSIDE.  If the 

answer is NO, continue in step 6, else go to step 8. 

6. If the pilot cell and the adjacent cell are similar, then continue 

in step 7, else mark the pilot cell on its XSIDE, indicating that it has 

been tested, and go to step 8. 
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7.    Join the  two cells   (pilot cell and  the new cell). mark the new 

coll by a mark R.   and   indicate  the  fact   that  it has  been joined  on  its 

Y8IDE.    Store  the  new cell   in an array of new cells.    Make the cell  a  pilüL 

coll and go to step 8. 

8.     If XSIDE  is  the  RIGHT SIDE,   then set XSIDE  to be LEFT SIDE.  YSIDE 

to be RIGHT SIDE,  and XADJ  to  be LEFT ADTACENT and  go  to step 9.     If ^ 

be LOWER SIDE, and XADJ is set  to be UPPER ADJACENT, and go to step 9.     if 

XSIDE  is  the UPPER SIDE,   then set XSIDE  to  be LOWER SIDE.  YSIDE  to be  UPPER 

SIDE, and XADJ to LOWER ADJACENT, and go to step lo. 

9.    Set   the pilot cell  to be the  first pilot cell   and go  to step I*. 

10.    Take   the array of new cells.    Take   the  index j   (initially  j = 0) 

and  increase  it by  1.     if j exceeds  the number of ^ ^ ^^  ^ ^ 

to step U.  else  take   the elen.ent ttj   fr«  the array of new cells and make  it 

the  first  pilot cell and go to step 3. 

11.    Zero  the array of new cells.     If there  is any cell  in  the  picture 

that has not been yet  tested,   then  increase  the  index of regions i  by  1. 

make a new mark Ri and go  to step 2. else go to the end. 

END. 
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k.2 Texture Regions 

This algorithm has been tested on textured regions as well as on colored 

regions. The scanning process is, for instance, shown in Fig. 22  with 

white squares, each representing window«-ef JO--x 32" points.  Fig. 22 

displays the boundaries of different textured regions of the picture 

shown in Fig. ?:>,  after the first pass. One can sec the different sizes 

of windows. 

Over every window there are several descriptors and parameters. 

Since we ut-ed several window sizes (32, 16, 8) and some of the parameters 

are size dependent, we reduced all descriptors and parameters to the 

smallest window size (8). Then the criteria ol similarity had to be set. 

Fig- 
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The criteria of similarity are set by the higher level program.  In 

our work we used two approaches, not exclusive but rather complementary. 

One approach used only black and white pictures and did not assume 

any previous knowledge about the scene. The similarity criteria were 

determined by the camera noise and expected error of the method. The 

whole region growing was based only on the similarities of certain 

geometric properties described by the Fourier texture operator. The 

results of this approach are displayed in Fig. 2k  and 26, where one can 

see that while this approach is sufficient for separating regions on 

simple, more or less artificial scenes (the rastered cube on Fig. 25, 

the cube on a grid surface in Fig. 25, it is not adequate for finding 

boundaries of regions of real outdoor scenes.  In the latter case one 

needs to know more about the scene and thus conduct a directed texture 

region growing or texture boundary detection. 

The directed texture region growing aud/or boundary detection is 

the other approach that we used.  It uses information gained through a 

color region grower. This information directs the application of the 

textured operator for two purposes: 

One is to look for a coawon texture where the colors «re the same or 

proximal. The other Is to look for texture differences where there are 

colored boundaries. 

This approach Identifies more efficiently the rol regions and their 

boundaries. The example In Figure 2? shows the different textured regions 

of the original picture displayed In Fig. 1. Most of the grass region 

came out as directional taxture. Only two areas (one on the left side and 



the other on the right side) within the grass region were identified as 

noisy texture, though with the same direction as the directional textures. 

It requires further verification of the continuity in those two textures 

in order to remove the boundaries. 

The main difference between the two approaches is that in the latter 

we use the texture operator in a directed way. This means that as well as 

applying the texture operator only in certain areas (not all over the picture), 

we also have the choice of asking for continuity and proximity in several 

descriptors and parameters independently. 

m </: 
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^•3  Color Regions 

Similarly, as for textured regions, the region growing algorithm has 

been used for colored regions.  The colored picture consists of t iree 

files, each representing the brightness through red, green and blue filters. 

We use the normalized values of color for each point (e.g. R/R + G + B, 

B/R + G + B) where R,B,G are the intensities through the red, blue and 

green filters respectively. As in the texture region grower, here we use 

again windows over which the average values of R/R + G + B and B/R + G + B 

are computed. The size of the windows depends on the structure of the 

picture we have chosen (8x8). The windows are overlapped, so that 

continuity is checked strictly. The threshold value that determines the 

similarity criterion depends on the resolution of the picture as well as 

on the window size.  In our case, it is set to 2, provided that we deal 

with 6 bit pictures. The example in Fig. 1+1+ shows the result of the above 

described color region grower, applied on the picture in Fig. 1.  The original 

picture is only h  bits resolution, so the threshold has to be different 

(0.75). Otherwise every thing is the same. 



h^    A Sheal-Theoretlc Point of View of Findinp Regions 

The geometric analysis of pictures, in particular, partition of a 

picture into regions, ca.» be neatly presented in the language of sheaves 

(for details see the APPEND.X). From a sheaf-theoretic point of view, 

the region identification process is based on an assignment of 

structures to windows (the local structure) ana on passing from LOCAL 

STRUCTURES (over windows^ to GLOBAL ONES (regions).  Thus, each region is 

specified by one sheaf.  Over every window, we can have several different 

descriptors, thereby different structures.  Each of these structures will 

partition the picture in a different way. These different partitionings 

of the picture, described by different sheaves, correspond to the different 

layers of description of the picture.  Naturally, the sheaves could be 

interconnected through some connecting mappings. The difficulty in making 

use of the structure of sheaves in scene analysis is that we usually do not 

know the connecting mappings between two different sheaves. 

The sheaves constitute a vehicle for checking the continuity and 

proxunity of structures with respect to some well defined connected mapping. 

In a concrete application of a texture region grower, this mathematical 

tool has the following limitations: 

(i)  If the structure is a texture, then it will find the continuity 

in the texture, but it will find discontinuity in the texture element. 

Thus the smallest window size must be restricted to the size of the texture 

elements. 

(li)  The sheaf-theory assumes that the structures over every two 

windows, which are in inclusion relationship, are related by a connected 

mapping.  However, in reality the different positions of windows may cause 
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o false continuities or discontinuities.  One has to do several 

different overlapped windowing in order to overcome this error. 

The contribution of the sheaf point of view to region growing is 

that it defines precisely the conditions for continuity and discontinuity 

of a structure with respect to some connected mapping. The sheaf theory 

shows that if the structures from two (overlapped) windows and their 

overlapped part are connected by the mapping, then the union of these two 

windows is continuous with respect to the structure and the mapping.  It 

is interesting that the sheaf conditions are similar to natural continuity 

conditions for use of the Fourier power spectrum. 

In most of our applications (texture or color region grower), the 

connected mapping is the local similarity relationship (it must be an 

f equivalence relation). Naturally, the theory allows much more complicated 

mappings as well as structures. 

After this discussion let us present the sheaf-theory more formally. 

0 The topology we shall use is discrete and is induced by certain norms, 

taken from the structure to integers. Once the topology is fixed, we 

introduce a convenient system of neighborhoods, called windows. We think 

0 0f windows as a system partially ordered by inclusion.  Procedures which 

evaluate the data over the windows assign to every window a structure of 

descriptors. When two windows, say v and w, are in inclusion relation- 

ship v c w, the corresponding networks of descriptors N  and N  are 
w      v 

related by a connecting mapping 

I* : N -. N 
V    W    v 

which essentially restricts the network over the bigger window to a network 
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on the smaller window.    Since  the process of restriction is transitive, 

one obtains by this   formalization a PRESHEAF associated with the image 

function 

N = <N  ,8% 
vi^w 

Sheaves are presheaves satisfying additional axioms. A definition of 

a sheaf in its full generality requires several additional technicalities. 

A more direct definition of a sheaf with a fairly clear picture-theoretic 

interpretation is given below. 

Thus, loosely speaking, a sheaf is a system of structures over a 

lattice of windows, where each structure represents one particular texture. 

W 
Consider a presheaf S = [S ; ß ) of structures over a cellular space 

X, i.e., on the lattice of subsets <Sub(x), C >. Then S is a sheaf over 

X precisely when for any family [V.jiei] of subsets of X with V = U V., 

i 
the following two conditions are satisfied; 

(1) Uniqueness axiom:  Vi[ ßJJ (•') = ßJJ (s'')] => a'  = s''; 
i       i 

(2) Existence axiom;      Vl,J[ßI! i-.,   (s.)  = ßJJ jn   (s.)]     => 

sVk [pJJ  (s) = s  ], 
vk K 

v.nv^ i'     'VV j 

where    s ,s ' ,s ''eSy.s^Sy   ,s €SV  ,  s^S     ,  and i,j,k€l. 
i    J       j k 

The condition   (1)  says that  if the  structure elements s are  locally 

identical,   then  they are also globally  identical.     That   is elements are 

uniquely determined  by  local data. 

The  condition   (2)   says   that  if we have  local  data which are  compatible, 

they actually  "patch  together"  to   form global data. 

The geometric meaning of axioms   (1)  and   (2)  is displayed below in Fig. 

28 and Fig. 29. 
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5-  INTERPRETATION OF OUTDOOR SCENES. 

The main issue in this chapter Is how to recognize and interpret 

real outdoor scenes of grass, water, sky , etc. 

5.1.  Pattern Recognition Approach. 

In an early stage of our research, we tried to recognize texture 

using a pattern recognition method (Bajcsy, I970). We computed a function 

of energy (E) along the frequencies (f) and derived a feature vector from this 

function. The features wer. the number of peaks, their energies, their 

width and their corresponding frequencies.  In addition, we characterized 

the function as flat or with peaks. These features were used for clas- 

sification of the texture into classes:  grass, water, regular pattern 

(like blobs, brick wall) and unidentified. As an example, the grass and 

water had more flat function than the regular patterns.  Samples of the 

function of the energy and the frequency of textures of grass, water, 

brick wall and blobs is displayed in Figs. 30 - 33. 
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Each picture consists of two graphs. One is the function (energy, 

frequency) computed in the window without any preprocessing (indexed by 

(a)), and the other is the same function as above computed from the data, 

which was preprocessed (indexed by (b)).  Preprocessing, in the case 

of grass and water, was a high pass filtering. The purpose of the 

preprocessing was to eliminate the effects of shadows on grass or water. 

For the regular patterns, the preprocessing consisted of a low pass 

filtering. The purpose of this filtering was to enhance the main fre- 

quency components of a regular patten and suppress the noise. 

By this method we could distinguish well the regular patterns (or 

man made patterns) from the natural textures encountered in outdoor 

scenes.  It was more difficult to distinguish the water from th« grass 

unless the main frequency component was sufficiently different. The 

training feature vector was extremely sensitive to differences in how 

the picture was taken, in particular, the distance between the observer 

and the scene, and the orientation of the observer (whether he is on the 

ground or in an airplane) with respect to the scene.  This method did 

not consider any corrections for texture gradient.  It simply classified 

some areas of a scene into some given classes of textures. 

We could have improved the feature vector using further features 

similar to Lendaris' and thus enlarged and refined the classification 

proc-durt of texture. We did not do it for the following reasons: 

(i)  Feature vectors offer very specific and rigid description of 

a texture, which is an obstacle in finding continuity of 

textured regions unless the texture is a very regular pattern 

without any features .inch as texture gradient.  Naturally, one 
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L can eoMtruet  fMtttt« vtctort UM «i^clflc, but tbra ch* 

•*n.ltlvlty for ch. dlff.r.nc». betw.o tw . dlff.rm f«ur#. 

will It ImiMi, which in g^r.l  |i not do.lrabU.    To wm 

up.  In th« IMHl r^ion flnd»r on« no^d« to hav* • llnU 

hility in choottnt foaturo« for trouplnt or dUcrlalMtory 

purpo.«..    on. .Uo ^.ntt to ha.« .y^ollc d..criptloo. »1th 

•«• pilBIlm .. oppoood to only m^rlc d..crtptlon (a. m 

tha foatura factor).    Tha ay^olic daacrlptlo« (if properly 

choaan)  It Inaariant with raapact to aavaral «atrlc (acalar) 

faaturaa and thua It rapraaanta a cartaln abatraetloo which 

ia uaaful  for rrcofniclon purpoaaa. 

(11)    Tha cUaatfleatlo« procaaa of ta«iuraa into •«* claaaaa bealdaa 

faatura vctora uaa. »am dlatanc. «aaaur^aota botwn tha 

trainlnf t-tuv vector and the .«pU  faatura vector.    Thla 

procaaa doea not conaidar any tupolottcal proparttaa of »tiidowa. 

na«ely connectivity, continuity end pronlalty.    Purthemore, 

•atric deacrlptlon of a real tamture la not aufficlent  for 

Identification jKirpoae..    Por ioatanc, graaa la Identified 

aa graaa not only becauae of Ita color or tha gaovcry of Ita 

texture but tltt Chrouth Ita apatlal  relatlonahlp vith other 

objacta on tha acane (e.g. graaa la alvev. oa tha ground, 

heloi» a aky, etc.). 

A different approach had to b. .ought   for dea.rlblng te.turea; a» 

•PProech that would give ay^olic deacrlptlona of a ta«t«re together «1th 

ao» para^tara «ad would find contlououa reglona with reapact to their 

daacrlptlona.    In Chapter 5 we have deacrlbed the te«ure ^r.icr that 



product« such • dMcriptlon.    ThU operator c«n function on «ffcflWM 

«Indo« .|,#i.    Th# Urt« vindo«. capturt th, global  twturM, «harM« 

th» Mall windows ara uaad for racofnlclon of fin* taxtura that In tha 

larta window la not noticad.    Tha continuity and proKfeity of a«a atnic 

turaa ara tha baalc prcptrttet uaad in a ragion growar.    So far. wa talked 

■oatly about tha tastura structura.    M ^.v.,.  tha atructura that  foma 

a raglon could dcpand on «any propartiaa, auch aa color, ahapa. ataa. 

and oth«ra. 

5»*»    Tartur» Crmdlmnt. 

Many alaaanta of tha world ara aada up of ta>tura alaaanta of a 

constant slsa. (graaa. brick mlU, whaat. watar wawaa).    Tha apparant 

•laa of tastura •Ummto dapanda upon diatanca.    Although tha. i la a 

chanca for «lataka. It la natural to intarprat conaiaiant variation to 

•pparant alsa of Castor» alaaants «a a mmmn of ralatlw» diatanca. 

If thara to Ittlla tartotlon. tha totarpratatlon is thst tha aurfaca to 

avarywhrra «ppmlMtaly at tha SMS diatanca fro. tha obiarwar.    Such 

aurfacaa ara n.arly prrpmdicular to tha Una of tighi and ara callrd 

frontal aurfacaa.    If thara la a If iU aartotion of apparant alsa 

of tantura alsMits, SMllar ala^ts ara aaau^d fvnhar away,    s^ch 

• taatura tr«4imt auggoata that tha aurfaca to longitudinal, that to, 

• long tha Una of sight.    Tha praamt. or abaanca of a ayataMtlc taa- 

tura gradiant giaaa a rough incication of tha aagla. curwatura. and 

ratotla» diatanca of objacta.    Tha rola of  tastur« gradiant to huMn 

parcaptlon of dapth haa baan daacrlbad by Clbaon (1950). 
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In ri«ur» Jfc , t«rf«c* Al U a tontitudtMl  ■wrfac« and aurfac« K 

• • •  froiic«!  t .rr.rr.     I« th» !■■§• th*r» nltti a gra^Unt af rastura, 

fTd» coaraa to flaa aloot ak. «teoraai m tfc* ia«Sr. »o avch gradtaei 

occurs alaag be, and tho tmtura la valfof« tliroi^ltoitc. 

TW taatura ■r^i.M caa ba uaatf aa a aaaaarUt «lek wfcata «cat« 

wo don'c knw, but «bleb glvot «a rolatlvo doftb oociaato«: 

• It twlaa aa far aa A. 

for  foal liar »urfaco* for trblcb wo knm» tbo tastara clMaat aiaa, tba 

aeala af tba aaaaurlag otlcb It baowa, aatf «« baa-/ a« aatlaato af aba^luta 

41aiaaca (pravltfa4 m, baoa aa aatlMta aff tba aa/faca a^to aitb rogartf 

ca cba abaanrar'a laogo ptaaa • «ro aball abaa aaaa tbat ao caa aot»r«ia» 

Ibat aagla).    Ilaco tbo obaonror kaoat bit orloatatlon oltb rogortf Ca 
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gravity, by ••■uaing • Icwl ground pUn«, h« can astlaaca tha dlatanca 

of araas naar his  faac with raaaonabla accuracy.    Thlahalpt In astab- 

11 thing absolute alta of grata and othar taxturaa on tha ground. 

Thara la ona raaaonablanaaa condition on taxtura gradlaoca.   Tha 

tpparaot alaa of taxtura alaaant» ahould dacraata toward tha horison. 

That  la, na don't axpact  larga ntarly lavat ovarhangs, above Ml, and 

for opaqua aurfacaa balou tha hortxon, tfa auat aaa dacraaalog apparent 

alaaant alaa toward tha horlaoo. 

Tha projactlon of a longitudinal or slanted aurfaca on a picture 

plane la obtained by perspective geoaetry.    The princlplea governing 

auch a projection are aa followo (gaa Pig* 35). 

'••■• Mane 
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co-ai 

H^"       ^  for Mil  e,. «g, 
M/CP« 02 

CO« «j - eo« »? -  I 

ttm th* alalUrtCT "f t» trUagl*! fallen 

f IT-* 
for Mil    ^-•I). t.  .■?4di 

9*i Ut us doftn« a fracclOMt  (CradlMt) 

■MfTior   In  tJMt* 

J        l|   •   Sg  

•hara 6u»g   «ra taatura alawnt ataaa tn tha UHga. 

Afcar aoaa a^raAfaMtlofi «*» «stain foraula: 

C      ■ - 
14 

■ lUlllMi cka fomula la taraa af aaglaa faa ratlaa)  laatMd of taatch 

a« radaa, «a gal: 

t1 • -   tMtk9, 

Tlma, «a can calcolai«  tha anfla «ich raapact to ofcaaraar. 

smcr tha flhaaraar knoira hla aaglaa «Ich raafacc ca gravUy and ha 



knows th« «ngl« with respect  to the obicrrver, h«  thus knows the 

angle of  the surface with respect  to gravity. 

Then,  the texture eleswnt  In the object apace can be  computed as 

foilowe: 
1 * 6 

d - 
1 

fd^coa a 

How sensitive are eatiaatea of the distance to the aaatasption that 

Che ground ia levelv 

Conaider Fig. 36 . 

MM  _ ^ Hotlaoa 

Ground Plena 

rig. 56 

He «MM to calculate the distance froa obaerver to the ground for 

level and non-level caaea. 6 u the angle b#twv#n the horiton end th» 

obaerver view. And 9 la the angle of the •.anted aurface. 

107 



Then S. 

it the ratio between the diatanc» Jj and the distance S , which ia 

the dUtance to the level aurface. Te foraula «hows that there is a 

fairly atrong dependence on „, except for ■mall distances. 

As an example of the texture gradient and its recngnition, we 

present a picture of the ocean (See Tig, 57); without rwcordlng the 

texture gradient we find a partition of the picture lato aeveral regions 

See Pig. Jo). All regions are described as monoHirectional textured 

ragiona, with the aaae directionalty but with different wave lengths. 

However the wave length changea linearly In a vertical direction acroas 

the picture. (Vrm  the bottoa of the picture the wavelength • 52 to the 

top of the picture where the wavala.igth - 8). Thua, by recognizing the 

texture gradient, we recogniae the whole picture as one textured region, 

diaplayed in Fig. 59. 
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5o-  The World Model 

In chapter 2 we looked closely at elements of an outdoor scene, 

involving grass, sky, clouds, water, and trees. On of our purposes 

was to introduce the sort of texture descriptors whch we have imple- 

mented.  The other was to lead the way into a discussion of our world 

model. We saw a great range of variation for sizes, colors and other 

properties of texture elements in these outdoor scenes. Grass ranges 

in color through greens, browns, and yellows. Trees range from a few 

feet to a few hundred feet in height. Because of this variation and the 

variation of apparent size of objects at different distances from the 

observer, it appears that no Immediate identification of image textures 

with elements of the world is reliable.  In some cases, the understandings 

depend on perhaps unconscious reasoning:  the spray on rocks is not very 

similar in appearance to the ocean around it.  In many cases, the identi- 

fications are simply resolved by considering relations between image 

regions; motion obscuration identifies trees In front of clouds, shadows 

identify trees as standing above ground, obscuration implies a background. 

Relative depth determines that the ground is roughly level and that trees 

stand above the ground. 

It is reasonable to question whether a model which must allow as 

much flexibility as to allow the range of sizes for objects, and the 

variation in relations, is of any use at all. There are several ways 

in which it is useful. The first is that certain relations are reasonably 

stable. The sky is bright against the horizon. The proportions of grass 

and trees are roughly independent of size.  Certain regular shapes are 

usually man-made. The second is that much of the variation is connected 
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with subsidiary conditions.  If trees appear different colors, they are 

different species, and have other Identifiable properties.  If the grass 

is yellow, then it must be dry. An apparent size gradient probably means 

a distance gradient. 

However, the uimal mode of pei ^eption is continuous perception. 

In scene analysis, we often think of showing a single picture with no 

context and expect the observer to understand it.  Indeed, humans can 

do just that usually.  But the bulk of perceptual activity is involved 

in moving in a world in which changes happen slowly and locally. Most 

of the world is nearly unchanged from one moment to the next. Most of 

the recent perceptual understanding are useful at any instant; the system 

knows a great deal about the environment and makes incremental changes 

to its model. The making of the changes to the model is aided by the 

detail of the knowledge already available, 

That does not mean that we can do without the ability to actually 

build up the mooel, either from the picture shown out of context, or 

guided by an already detailed model.  But it does mean that a large 

part of perceptual activity is guided by detailed models. 

Another aspect of the world model is that it contains the information 

about the observer's point of view. The observer's motion provides a 

depth sense equivalent to stereo, but much more useful for distant ob- 

jects. Distance estimates using motion parallax depend on the observer's 

estimate of his motion.  Stereo distance measurements depend upon a model 

for the convergence position of the two eyes, the eye separation, and 

correspondence of the coordinate systems of the two eyes. An equivalent 

observer model has been implemented at this laboratory in the work of 
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ü Sobel   (1970). Teneabaun,  (1970), and  the use of observer's .notion for depth 

perception has  been implemented by Nevatia   (unpublished).    Formally,   the 

model has   two  levels: 

(a) Regions  in  the oÄJ^st space,  objects and collections of 

objects,  called  the eler*bnts  of the model- 

(b) Structured description of the elements  in the object  space. 

O                                                         These ascriptions are almost  directly  interpretable  in a 

1 program as  procedures. 

A world model  is a dynamic structure  that changes during the 

0 identification process.    The description of the elements of the model 

is carried out  in  the object space and, wherever it  is possible, with 

counterparts in the  image space.    Not all descriptors in the object 

0 space have a meaningful counterpart  in image space.    An example  is  the 

size of objects, which can be  interpreted  from distance estimates and 

apparent  sizes. 

» The  properties  of grass,   sky.  water and   trees  have  been described 

in Table   1.    All  these descriptions are  included  in the world model and 

some new ones are   included  in Table 7. 

3 All objects  in the model, except rocks and unnamed objects, have 

broken  boundaries. 

One may wonder what other descriptors   (besides  texture descriptors 

j andcolorde^iPtorS).could be relevant in the model.    Unlike in the 

case of grass blades, water waves, and trees, where  their size plays 

an important  role,   the  size  of rocks varies  so much  that  it  is  hardly 

) a useful   feature   for  them.    On the other hand,   the shape of rocks 

(bloblike),   is  slgnficant because  it can be contrasted with the linear 
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shapes of grass leaves or water waves. However, the only rocks of 

Interest are those which are big enough to stick far out of the ground 

(might impede navigation). Here we worry about the relevance of size 

and shape of texture elements. What about the site and shape of regions? 

Size and shape is not significant for region, of grass, ocean, forest. 

and ensembles of rocks. 
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Region«  in 
Object Spac* 

ir#-i' 

water 

sky 

clouda 

tret 

rock 

uniMMd 
objects 

Color 
Attributes 

T 

=4 
Spetial 
Reietlonshipa 

Usually green, 
sosMtisws yellow 
or light broun, 
••ever blue. 

Blue or green, 
soaatiaes gray 
with ailver weves, 
never red 

Located on ground, under 
the sky and tr-res. 

Light blue, the 
brightest area 
in the  scene. 

Located at  the ground plane 
below aky and trees.    In the 
iaage apace, ocean and grass, 
trees or rocks could for» over- 
lapping regicna. 

Objects   in the sky. 

The crown  is 
usually green, 
sosMtisHs yellow, 
brown or red . 
The  trunk  if dark 
brown. 

Sk» is the farthest region in 
Che scene and  it  ia alweys 
ebove any alaaeot of the world 
•odel.     In the iaage spece it 
can fora overlapping regions with 
gress,  trees, end rocks. 

Trees are below the aky, and 
above gress or ocean. 

All shades of gray.    Rocka are elwaya below sky *nd 
I  on the ground.    They could be 

scattered  in grass and water. 

any color On ground, below aky. 
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5.k   Th« HtMh>r Uwl l^re^r— 

W« dtftcuts briefly • tuts«!!«! hl^wr Uval protraa vhleli «t 

• lauUu.    «• concMtMt« on the two «CCMS ta flturcs ko «ai %2.    Ft«. %0 

cmiMlnc ihr— plctun* tmtf* of tho OCOM la fig. I ihrough 5 flltort« 

rod, groon and bluo.    Tho aoati tOMil. tOtML   «ad fCt«5 conrotpood Co 

rod, groon ond bluo flltorod oconot.    flguro  ■    conioln» foui glcuroo 

of o ocooo In Fig. hi.   UM cop two and tho bottoa lolc gleturoo corroopoad 

to tho rod, grooa, aad bluo  flltorod plcturoa, roapoctlvoly.    Tho botto« 

right picture  la tho brlghtnoaa function of tho acono la Pig. bl. 

Fig. kO 
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uc m e«ii m •€•••• u wt. ^ mi ü MATH •« tota «•Kcci-iy. 

TWw tM mrM trott  ptrt, of tM« proMtt of Ui.ryr.tUt **• •cmecur« 

orMAlMdM of rvgUM iMvint cMtlaMM fre^riU* 

i«uraU«ilMi of •patul raUcloM 

UMUflMilM of OUSMU U okjoci tpoeo; 

thoy or« ooc tcrlctly l»lrorclHo.i. otM« Uoocifuotu« tfountlooo *m. 

•Hiut roloiloM. •* ovuMu ochor lo» to«ol orfioUotloM. 

••» •! (ho oockoolwo for ortoottottoo of cootiauooo rogUM ooro 

pwMMrty tflMMooi.   n, r.,,^ fc.^ „ t0.tlll<|lty i, ^^ ^ „„ 

u«t.f. 4oocrl»«ort oro oourol ...r.m« gu«..   rro«i«i,r pr^4oo U» 

botlt for iko ooMitiioo of costuro M^or-rogtoM «Aldi oro tfloeoowcutf, 

kM .., to .oofoti, ooott*«* mmmaU.   M tku ogorotu«. m «~P 

lo^Uor ooorky rotlo«. of liko color or  llko ttuturmi groportio«.    Tto 

oooi •ocko.i» |, uoi of hrfotho.u-^orlflcotiooi    • portlooUr color or 

toM«o rot!«» U • kygockoclt of coMdoolty.    If tf» rogioo too . — 

*rtUol o«oclo«|(,t m rtNHiW flto ite« eitor grogorcioo oro coocu»o». 

•w iho rogloo.    If cto tootoortoo oro MM. (too ttoto *ooU to 

(ootorol grotordoc ofcioli coitUot ocrooo (to toootory.  fro. oHick m 

••ou mmm ■ oootiooii, mm *o*\4 to mm* g, looku« tor mm 

coodomiy.    if ito towiorioc corrocgo^ to pfeyalcol toM^ortoo, «o «rill 

«^-lljr to oblo to ftto o üwm   tty u MM (o.orol prof.r(T. 

to MO Ufor o fo» ototUI roloiu« fr« cto ...,wr. grotioot. 

fro» gMooot oto«t uicrgocnioo («tooli tojooc to to froot of tolck) oto 

froo (to otoorwr orlooiocloo oto gooldoo, ooMUog »im IM mmm gUoo 

lnrgP(toou.    to o cooglou iyou«, m oooto ooll m togU porcogtioo to 
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•carto and aoclon parallax.    Our  »nlerrnce« would b« a good (ulde  to 

•conoaical UM of ctMM BoduUt. 

IdemiflMCion.  In our •ugjtoitod ■yttoa. procoodt both  fro« the 

»«rid Mdol and  fron th« data.    SOM alaMncs of th« «#orlv aodol ara 

battar start lot plaeaa than othar«.   Wa aMuao that th« sky would ba 

•aally asti<bllahad in «oat caaaa.    Othar UH|a alavaota   ihould ba 

approached aftar  fiading tha la^ortaot atructural alaMnta In objact 

apaca, i.a., •ky. ground plana, and tra«a.    Wa ara aaauaing that a  full 

variety of propar'iaa and relation« aid ua in aaking initial and tentative 

identificatiooa of aky, ate. 

in Figure kO, which wa call WATER, wa have two aajor ragiona which 

corraapood to grass, a region which correspond* to the rock, and  two 

ragiona which corraapood to the weter.    In the aceoe called ROSES,  the 

aky appeara aa one large region and several SBMII ragiona; there are three 

regions of the bush, and aeveral aaall  reglooa which corraapood  to roaaa. 

In tha aoalyais of theae two scecaa baaed only on texture analysis 

without guidance,  the scene KATE*  is described pertly sdequataly.    After  the 

teatura gradient suggests further continuities,  the gressy regiona merge. 

and there reaain three aain laag« eleaaota which correspond to graaa, 

rock,  «nd water; aaa Pig. kj. 

fhia texture organisation ia auttable  for providing hypotheaea of 

continuity for ragiona which ara broken by color or^nisation for MATER; 

saa Pig. kk.    The siailsrii/ in color of the Joined color regions confinss 

the texture continuity.    In ROSES,  the  sky  is adequately deacribed by 

texture, while the buah and flower ragiona are chaotic, aa one can a«a in 

Pi«, kj.    Thla reflects one of the inedequacioa of the Fourier  tranafora. 
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the weakness with  leatuie sizes approaching the window size.    Th^s is 

nornally accomplished by subdividing regions with slow changes which 

correspond to probable region boundaries.    That was  suppressed in this 

version of the program. 

The  region-growing does not succeed in isolating the  flowers by 

cutting up windows containing  flowers  to partition off smaller cells of 

adjoining areas of the  bush.    This  is  the worst performance of the 

texture region  finding process, but  it is  instructive.    On the whole,   the 

unaugmented  texture region analysis is unable  to aid  in proposing useful 

0 alternative hypotheses  for organization.    However,   texture boundaries  for 

the sky coincide with color boundaries   (the color boundaries of the roses 

are displayed  in Fig. 1+6), and a slight  relaxation of the criteria  for 

continuity, verified by continuity in contrast among the color components, 

does provide a  set of larger  texture regions among  the bush and flowers. 

Even in that worst case,   the junbled areas of color correspond  to regions 

of moderate size   ander  texture,  so that  there are no large  regions of 

the picture which appear entirely chaotic under both aspects.    The  texture 

descriptors are useful  for analyzing the color regions, and have more 

utility used   in that directed mode.    The element size and contrast are 

meaningful when restricted to the bush;   in  the unaided texture analysis, 

these descriptors mix  the  flowers and  bush. 

In evaluating our higher level proceduret,  it is usual that we re- 

evaluate  the quality of the  lower  level modules.    We  find significant ways 

in which they could be improved, and in ways which would best be done at 

that  level.     In general,  it is better to proceed  to a   fully developed 

system then to put disproportionate work at  the  low level.    We will later 
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specify what  improvements we would make  in the  low level modules. 

Let us make  the preliminary organization of the  two scenes.    With 

ROSES, we begin with proximity of color regions.    The bush  regions and 

the  flower regions are alike  in color;   for example in two areas of the 

bush,   the color coordinates    r/(r+g+b)    and    g/(r+g+b)    are: 

Sample  1 (.1+6,   .1+3) 

Sample 2 (.1+7,   .1+0) 

thus we can conjecture  these as a super-region.    Let üs compare contrast 

and dominant wavelength  for these two color regions which we conjecture 

to be  similar.     Compare  the   two color regions   in Fig. 1+6 with  the Tables 

8,  9, and 10 of average  intensity, waveleu^ I'I,  and  contrast,  over 8x8 

windows.    We  see   that  the doirinant wavelength  is  short  over much of these 

two color regions.     In fact,  if we define a region from the small 

wavelengths   (< k)  the region spreads over most of the bush.     In the scene, 

the  sky is a region under color and all  texture descriptors.    The sky 

boundary in color is reinforced by the existence of texture boundaries. 

As we have  indicated,   textural properties are probably adequate to confirm 

continuity of  the  regions   suggested  by color  for  bushes and   flowers,  and 

to  show discontinuities of  frequency.     In WATER,   the   two  regions correspond- 

ing  to water are  joined  by proximity  in color and continuity  in texture. 

The water boundary shows  up strongly as a  change  in color and  in texture, 

directional  to homogeneous   for  the water-rock boundary, and different 

directionalities with distinctly different color at  the water-grass 

boundary.    The grass  is contiaous  in directionality,   size,  and  color. 

We can now make correspondence with the world model.    Since  the sky is 

often prominent in outdoor scenes, we attempt  (;o find  the  sky.    We look 
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at white and blue regions which are near or above the horizon.    In 

WATER, we might try the region which is really water.    The color is 

acceptable,  but the directionality is very unlikely for sky, and the 

^ contrast and size of texture elements is also unlikely.     (This estimate 

is based on a  few months of sporadic sky watching.     (Of course,  there 

are directional clouds,   'Wickerei sky",  but it seems quite infrequent. 

Q Also'  the clouds seem to have much lower frequency.)    The water region is 

below the horizon.    If there were a significant view, we could see a 

texture gradient and thus substantiate that the  surface is  flat.    Also, 

O in cor>tinuous perception, we would find that the water motion is very 

different  from cloud motion.    Motion would also allow interpretation of 

the breakers around the rock as part of the water.    The region correspond- 

ing to grass is directional,  low contrast, and has a texture gradient, 

implying that it is horizontal.    The color is consistent with grass, 

which lies on the ground plane.    From the ground plane assumption, we 

Q can estimate the size of the elements of the grass: 

image size*angular resolution*distance 

-    2*(l/666/*300 cm =  .9cm 

D where we estimated the image size previously,   the camera parameters aie 

known, and the distance  is obtained from a crude guess,  but is known in 

principle from the observer position and orientation.    The size is also 

consistent with grass blades.    For the rock, neither color nor homogeneity 

tell us very much.    Since  the rock is convex downward on its boundary with 

water, we assume that the rock is  In front of the horizontal water surface. 

We assume thus that it is an object which sticks up from the surface, 

and calculate  the vertical height and length along the ground.    From the 
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image, the texture gradient tells us that the distance at the rock is about 

k   times that at the front of the picture. Thus, the above expression 

gives: 

18*(1/666)*1200cm = 36cm 

while the width of the rock is approximately 30öcm. These are only- 

approximate values which depend on our guesses about the ground plane 

and texture gradient. On the other hand, the conclusions depend most 

strongly on relative size conclusions. Grass elements are small; rocks 

are often big compared to grass. We can make the comparison between 

the rock and grass near the base of the rock.  In the image, the rock is 

big, and from all assumptions about objects in the image being further 

away as they recede in apparent position toward the horizon, the rock is 

much bigger than the elements of the grass. These give some strength to 

the assumption. 

In ROSES, we begin by attempting to find the sky. The only region 

of acceptable color is the sky itself. The color is white, indicating 

clouds, with low contrast as seen in Table 8. The texture is homogeneous. 

As a verification, we might find blue patches, find motion, and find that 

the distance of this region is very great. The region is far above the 

horizon, and is very bright; see the brightness in Table 6.  From the 

concave downward boundary with the other regions, we assume that it is 

behind the green elements. With the identification sky; we find that 

the green elements are in front of the sky, thus probably approximately 

vertical and are frontal (they show no systematic texture gradient , also 

indicating that they are vertical). The texture, is blob-like; the blob 

size is interesting.  If we can guess that these are leaves rather than 
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leaf ^lusters or branches, then we can estimate the distance to the bush 

Finding l\w.  stems  would aid in that.  IJecausc the: bush is probably 

vertical, it is not grass.  If we include leaf elements, fruits and 

flowers in our descviptions of trees and bushes, then by guessing thit 

the flowers are really associated with the bush which surrounds them, we 

can guess the scale of the leaves relative to the flowers, and thus 

establish that the texture elements are leaves and establish approximate 

distance. Of course, at any level, we could establish relatively 

unique elements to correspond in two views, and determine distance by 

stereo or motion. 

■ 
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6.     CONCLUSIONS 

We presented a representation of textured scenes which was not a  two- 

dimensional representation of the projected   image,  but a  three-dimensional 

represratation of the element« and spatial relations  in object space.    We 

feel that  the representation of spatial relation-   such as'ferass is   found on 

the ground plane'^nd  the nearly  infinite  distance of the  sky are charact- 

eristic of these elements,  and help more  than any other propertiea to 

identify them and  to orient   the  observer.    Our representation  is effective, 

also,  in that it is segmented  into distinct elements, which are described 

by a heirarchy of texture  regions and  textured elements.    Textured  regions 

may be  texture elements of a  super  texture,  or  texture elements may be 

textured regions of a  sub-texture.    This  is not only a   formal  nicety,  but 

a  usual part of our description of ourdoor scenes;   for example,   in  trees, 

the   leaves are  texture elements  of  leaf clusters or branches, which are 

texture elements of a  tree, which is a  texture element  of  tree clusters. 

The description of shape of  texture elements  depends heavily on a  linear 

approximation  to  shape, and describes directionality, width of  texture 

elements, and  spacings.    We argue  from psychological evidence   that  these 

are  the most  important of descriptors, and   further,   that  they are natural 

for computer  implementation.    These descriptors are most useful   for 

directional  textures.    The  representation is  included  in a world model  for 

which an example was giver,  but whid   awaits  implementation with  the 

high  level procedures. 

A simple color region analysis was very useful   in  texture analysis. 

The normalized color coordinates,     r/(r+g+b)    and    g/(r+g-fb)    «ere 

compared  for continuity,  and regions    were defined by neighbors of 

continuous color.    There are  some potential problems  in an analysis 
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of color In outdoor iccnos. ainc« Mny of cho toxtur« tlawttt «r» v«ry 

■mall.    Typically, th« regions art  laavaa or bladaa of graa«.   A« an 

expedient  to  find  larger  regions.   *#• ha »• averaged over a «sail window, 

end compared colors of adjacent windowa.    As a consequence, we sacrificed 

localisation of edgea.    The expedient  is only psrtially successful however. 

We notice that the averaging works best among clusters of leaves where  the 

color is uniform to begin wirh.    Where the leaves are isolated sgalnst   urn 

sky,  the color contrsst  is  large, and continoity of  the averages are only 

by chance.    Thus,  the averaging is not very successful.    A better mechanlsai 

to define  larger regions of color is perhaps to go to the computationally 

more difficult opeiation of  finding like colors within windows, that  ia 

to implement color regions based on proximity rsther than continuity. 

The obvioua vclue of defining color regions which Ignore the brightness 

fluctuatlona of Individual  leaves should not  lead ua to ignore brightness 

edges and consider  only color edges.    We else make uae of the sise of the 

brightness regions,  the  leaves in this case. 

A sheaf-theoretic description fonsallses the process of region-growing 

and gives an exact account of the shift  from locsl  to global and vice 

versa.    One must be csutlous about  Intetpretlng the sheaf-theoretic 

notlona In the context of color and texture regions.    Due to sampling we 

have a  finite acala of window sises snd the definition must   include a 

least window sise,  the else of texture elements.    No such discreteness 

conditions are embedded  In  aheef theory. 

In the  Implementation of texture descriptors, we were able to tranalate 

thoae apatlal domain descriptors that we  found Important  from Fourier 

transforms over windows of various sites.    Directional and non-directional 
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af pmmkm which ara coaaMuaacaa of UM foarlar aarlaa.    Daaftta tkaaa 

dlfflcolilaa.  cha .Mccra .ho» »aafol dlractloaalu, ptapmfUm», and M 

ha«a haoa ahla ta work with thaa. 

Tha aora Mrloui prohl*«. «nth  ih« rowlar traaaforaa .1« caaca^u.! 

dlffleoltla. which ara croa of aajr orchotoaat aafaoaloa aad of cha um 

rouriar traaafara.    latarfracatloo ta haaad oa tha ^iar apactnai aad 

fhmmm laforaatloa la Ifaorad.    Thaaa traaaforaa ara aoa-local, aad giva 

aary poor adta aad fMUloa laforaacioa.    Ta aa aataat. oa haa» triad to 

•at arouod thu hy aa mmprndimmi of uaint local wi^ow..    fhi. prowidoa a 

crada locatuattoa, which oaa not ada^uata for May MrMMa.    Tha oacfulaaaa 
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of cl» ir.Mf.nM «. wry ^pm^ut o« ch« ^.u of ih. „i.^,.   ^ 

4.MrlM.r. m «., ^j«, ^ ,„ w|J|daw ^ ^ ^ ^ ^ ^^ 

•tl-r «.IOM «i c. fl^ «. ^ue^ ol UMW #W||i w|i|i|j| ^ 

-t-«-.   Thl. —.< u-, . r.^. of *im4m ^ m% ^^^   ^ |J|Ät 

•«.«I. « could PNI.M, ,,, p..lu<Nli|  Uloi1lgtl0(| ^ ^ ^^^ 

.^..IM «.^ U. ,,... o| thm lnmttom     mmm9    ^  u ^ ^ 

f^ ylfc^l, .p.^ tMw9 9lm9mt9t    u ^ UMM ^   ^ ^ ^ 

I. f-H. lrr^,Ur.   Tte M-1^1 M«W of u. .„^^ 4. . ^w 

H-tm—m im mimg .o,.., lBloni,l|IM|#   A- ,„ ^^ gMit! ^ ... -||# 

MHMM i4wr* ih» iwiiiil «MtlMM •» »-fwi U MMriM out Mi 

l^gUi l^| M—Ml...   m. kM IteiM wllllly.   mr. .r. . to. 

•I-H. e.M. I* .MA ,„ color tomtrmBlB ^ H ^^^ ^ ^ 

••« y#i iKorf.r.tMl cli.M |MO ^ d.Mrlnor.. 

Tff .M  MM   iMrMMUl   i^«MM.I.  ,. I. MM  to Mf   fMrt.C 

-^rlMM Mh-..   OM .f ,|^ u l0 w ^.^.j mmh9tM tm ^l.m|B|||- 

-l-ll..  ««I   IM.IIM. .f dl.CMII«Ml||..   U dlr.«ClM.I   MMM.      I.  MM 

MM.. MrrUp^ ..„^auing „«.la M MCI-I Mar toMi.rl...    iMludl^ 

r-rur color M^OT,.,. «,. »,„ lonM .^MO.    H. .hoold .«..Mo MM Mi 

r^iM opor.tor. iporfc.,. M fiu.r^ dlrMtlM.1 CM^OM.!.) to tu* ik. 

•«••I «. IlMor .IM,.,, ..< lo flll- ko^,^ 0f ^„H^^,.,^,. 

rttiOM. 

r«iiur«d rogioM MI. MI.IM4 ao ih. »■—- •« , PI«IHM M CM ta.i. .f ih. t.MHr« 4.MrlMor«. 

mm .. M. it» .IMOO .i«, „ wll ., u rtih| ^   m ^^ #| 



«u*w %iMt «MM to toi(«r I«ft to lii*Mr t*Ml ^otc« mm* mm—n* 

n%.m:   The «ctual protraa «Aick ■■«• M«ciir*l r«ttaw» CUMIIM ilw 

totcrlpior« «MeHlat M MM-^lrMCloMl, kl-«li«ctl«Mlt MeH-tik«. 

kMSHMSIM,  «fli  Mtcy.     ItM i^jMMC   raflWM MM Wrt^   UIO CP«lim«OM 

r«ttoM taM4 M coMiMlcy of tkt ««Mrlfcort.   A cto^t of tcoU «•• «M4 

It Ctoff« Mt .•  «CrMf  fMfMMy  I  IMUMM   (clMC   U,  tlm  ftohmtly Mt 

M t4at It Cfct wtaiM) tr It i*trt Mt t kl-tir«ciloM| tttttrt «Hirh 

CMM tritt ItM t hMttftry tt IM tflrfcdtMl itsttrtt.   A mtomi fgkm- 

g.mHt ptM rtUwt cht crlttrit Mtf laMttt cUttlllttcitM to ttiMi 

ttrft rttltM fcy tacl«dt«t tcctfttklt Mtll Mi«hbof tat rtglMt Mitr 

rtlttti crlitrU. 

A piUti pnjtm ttitMlwt fmtmnt rvtien« fcttttf M IttorMilM 

ptttttf 4mm ITM tktM.   nit trotrM Mt ftlM ky tht MM, tot ifct 

•dwu* CM It tfMlly Mil IMM ttM frM ockti tratrtM.    Tfct gtMt4 

trotraM tvttmltto (««(»r« rtgtoM oUfcia ^t<tflt4 trMt tti ttcor^l^ 

to ttocintrf tMUrlcy tflctrU. for ttM^lt, frt^Mtcy tatf couirttt. 

CoMlMlly cMlt tt ttgUrvd M tfct tatlt tf Mftrtct ptrMtctrt. 

M*   w«   •«•   iiKr»w«itl   iMVOHMttt  it ckt rtflMfirowl^ kttttf 

M royrltr dttcrigcort     Um MHU tM M ttttrMit itcilc tor olatfoM with 

loot MMUatt^i MO M toMiviAt kttot M tut M««ikltlty of M o4ti la 

ifct wtmim.   Mt OMM tUo locrMtt wimtm tltt co look for t rttMio4 

fotiero of t  Itrftr tltt.   Wt M»M tllalMit ikt cttttlflcaiiat AIM OM 

«tM.    Thmtw It tMt trgM«»!   la ftvor of ikt ctottlficaiioo.    rktrt tr« 

otCMlljr Mojr Minrtt okjoci» «kick ft 11 loio Mt or OMtkor tf ikow 

clttMt.    tat ckt tUMltlMilM It ikt Mrly titat« iMMinn trilfuut 

irut Mt itaor»* ih« Mtiittt t>»<rloier* «kitk tr« tMlUklt.   Ooly 
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Um 4— I,  „Uli Ifet« ttoMM.    A  fW,l»#r Mi m .^Ui^nt 

•Mill« ««M fc, M IMIIIMU- »f M«,*!!, of Ufc. rf.^np.^ ^ 

•Mrfcy wlAdwt for i««i«tfr •«»•r-r^lMM. 

Mt *«MiiMtf M OMIIM for « hi^r u^t ^«^„r, t0 -ht # 

«•rntfiMiiai« teiwon ih« IM* OIOMOU ooi Uio oorM Mtfal.   nu 

oy<l|M o.. M, I^I—.^ *g .u»^ „ ^ mm^i9B     ^ i|r|k|j|i 

toMlMioM fr» cfct «teoUitM ooro itei bMttfNMti« ^f in. ti«.. 

^-iOMl   .«.MO  Of   ,1» M^. M. ^.^ |0 ^  lfc#   1<|#<|||f|cat|#<| 

m. .«,«.,• olU ü« oorfc 4o« I. UMpMt.te of „rlaI pfco,.,«^, 

fr «Mok ii» ww u off^u^lr oo o IOMII, fUc   »mtom, ooi 4^tli 

coa*t4«r«iiooft «ro ooloppfiiM .   A B.,,-«,^I .«.,.« »^.. 

Wttat Mroctvo ofcoo it •« .«»rk ...h «„ lhM . .j^,, ^^„y.   ^ 

«tf»l 4MI« oitli «iliiH« prof.rtlot * • lwchMl..*orlfU.Uoo ptroilpi 

for »tofMUg taMiorto« «oi ratloos.   OMCIMII, I« ■ pi»y,to«l »rfo«« 

«. feo l^otk.,!^ 1 IM I..U of mm of .M or^tio..   ofioo. ek. 

rotl«. -•«ri^i- fro. •« «» „.„„, wlll u Mrlle-Ur|y ^^^ ^ 

—IM.    M i. M« «1«, ,*, M w .j^, 9Uk ^ ^mmm ^ ^^^ 

•'  ».. -I«* -fficloot cootot oo «oof uimHy «ko o f* rt«!«.    ,„, 

•• «• «ry -^.1 4U^nM ^M. M k^och.— of «.«•,„, ^.r^,, 

«Nl MM  ^i cmilmuf ta itei ^r^rl, cwro^p^. ,o eooU-.,, i. 

oil»» pro^nu.j «UMMlMUjp io pky.icol «orfoco« ofcoo roflMt« 4U- 

•«tlMltlM u »Mr«! ^mio«.    to ih,^ •M^I... t9l9t r9gttm ^^ 

JM«i IMO color .^or-rotioM of llko .«lor.    T.M-rol pr^ru«, »f 

Umitmmt  fro^oMcy ooi coomtt *mm4 CMüMK, of tfeMt ^«friio« o«or 

tl» »lor n^f-rotioo.   At tkU p^M, tko IMW-UMI «*,!•• «.W 

tMttioo io o |ol4oi «Mt to O«PM4 th« ro«iM corroafoaii^ to tlWM 
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irfleal teMrlftort «nd laclMi« «Mrty MM of ih. i«B. «kicb HM 

•01 «wll^Mrltoi 1« lb« MrlUr «MifaU with ItctU COACMC. 

TU« «.«ion. «rfiich COM  forth tfo Ml Mto « «MI  tMft.    THoy o««rUp 

•mi 4o «ec cowr clw «teol«  IMM-    IllU. w IM «l-ing to im.rpr«!  thoM 

pant of It (bot «ff« turlo co «Miorttoa4.    taforooeot of tpotUl rolotioo« 

•ro Uportoot hon.   ToKtoro «rodtoot *m otclMtoo of oortoco orlootottoo. 

TW troord »Uoo oow^cloo »vo o loco I coord loot« tyotM »hoo coohlood 

with th« ••W^IIOO tut ohjocto ttood out  fro« tho irouM.    Thoto 

rvtottou toftmiU ^rlatrlly oo roUclvo dUtooco ood rototlvo tlto 

•otlMMi «Alofc «oro oot grootly »ootttoo to tho ooow^tioia.    I« MM 

MM«   It MO  HMlhlO   tO tMO« Mich  MjMt  MO   Ift   ffM'   of OMthOr, 

•Ithtr hOM«M of cooMvlty. or  froo IdoottflMttM of tho ohy or Mtor. 

to Idootlfylog oloMott oM •trvcturo of tho world Mdol, Mr 

•tMlottoo oftOBftod first  to oatohlloh tl»i thy.    looM M color 

hrlghtMM, CMtroct with tho horitoo. sod Its »MitiM (ohoM tho 

hocuoo ootlMtod hy grovlty), this |S OMorad o •i^U Mich.    Wo MO OIM 

thoo <l«c*r*ti«  tho  tky  lino «nd fiMtt vAlch ohjocta CUM Mt   frM tho 

groMd ptoM.    SIMO of tORiur» OIOMMC MM of Mootdorohlo OM} kOMlodfC 

of •§«•  to Mch MM Mofol hOM thoo in tho hlMko «orId whor« caoio*t 

to Itottod.    Tho booolMf* of tho OIM of grots hlodo« to ooro uMful 

thoo tho koMlodfi of tho cUo of OM gortlMtor block. 

Mo toM Motloood MM incrvMotol lagroMMotc to tostoM loco I 

OotcrigtiM «M to forMog toitMO MgtloM.    Tho grlMry MOhMOMt «t 

thic IOMI OM tho crodo loMllMtlM oM lUiltod UM of groolMty lo 

cotohllchl« M^or-MglMc.    taproMMot of tho color roglM-floMr to *t 

grlMry MgMtOMO.    gioco Met of the totorgMtotlM d«g«adod ugon 
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In'araoc« ■•parat« fr« ttrlcdy taxeural propartUs of araaa of the 

iaaga, M« faal  that  tha aoat atgnlflcant naxt »um ia to aabad chaaa 

alawnt« In a caaplata vlaual ayataa.    Thia would Involve aora than Juat 

laplaaantatto« of tha aimilatad hithar  laval prograB.    Tha typical ayata« 

would navigata In an outdoor or planetary anploration anviromant.    Tha 

oavltation goal« aaka aspllclt which problaw tha ayata« naada to aolva 

mt any ttea.    Tha aituation la ona of continuous parcaptlon which allowa 

tha Mdal bullt up at ona  instant to ha utad In «ubaaquant problaa-aolvlng 

Contlnuoua parcaptlon alao alloua ua to tall which object« are aovlng. 

*d»lch la of uae In outdoor acaaaa.    Tha coaplata ayataa would have 

atarao and aotloo parallan for depth at nail and treat dlitancaa.    To 

a certain esteot. the ayataa would avoid  flndlni aolutlonn which could 

be  found purely fro« tingle project 1«a, but auch a ayatea appoara 

fMatble within the current atata of computer vlaton, while a ayitea 

which Ignore« ao «ich Inforaatlon doea not appear to be achleveble toon. 
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APPENDIX 

To0olo«lc»l  Modolf 

In thin icction w« Rive a brief «ccounc of a  possible approach to 

the  topology of pictures and then explain   the    sheaf- 

theoretlc aodel of textured scenes.  Involving several different structure 

sheaves. 

The topology ve shall use  Is discrete and  is  Induced by certain 

nor«s,  transplanted  fro« the structure of integers.    Needless to say, 

the purpose of thia topology  is to make precise the use of such notions 

as continuity and proximity. 

Once the topology is   fixed, we  Introduce a convenient system of 

neighborhoods, called %»indows.    These will  be used  throughout this work. 

Given e textured picture with the discrete topology as indicated 

above, we assign to every window over the picture a structure of some 

sort, depending on the picture under the window and,  perhaps, on some 

fragment of prior knowledge concerning  the picture.    The structure  In 

question can be soaething very simple such as a set of descriptions or 

something more  Involved such as a vector space, generated by the 

attribute vectors of the picture under the window.    We emphasize the 

degree of generality  Involved In the specific choice of structures. 

In the  implementation of our picture  identification program we use a 

structure  Induced by the Fourier   Image of the picture  function. 

After the species of structures has been selected, we reduce  the 

degree of  freedom In the set of *■   uctures by assuming that  the structures 

over any pair of windows standing in an inclusion relationship are 

closely related.    That   la, one of the structures can be transformed 
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into the other precisely when the  picture   function under the  two windows 

is continuous.    The  transformation, which  in a general situation  is 

called a homomorphlsm.  depends  on the picture  function and possibly on 

a  prior knowledge  relevant  to the  picture.     If we  imagine   that  the 

structures carry the   local  picture  Information,   then the corresponding 

homomorphlsms  tell  us how  this   information  changes as we move   from one 

window  to another.    Thus  the question as  to when and how  to join  two 

locations  on  the  picture   is answered  by  the  homomorphlsms,   interrelating 

some  of  ehe structures. 

Topology and Metric of Digitized  Pictures 

One of the most efficient ways of arriving at  the topologlcal model 

of a digitized  picture  is  to consider  the picture as a set of cells X 

and coordlnatizc cr parametrize  it by  the  finite normed  two-dimensional 

sp.icc  of  integers  modulo    <n,m>: 

p 
Z*"       =  Z  x Z /ji.tcO 

n,m        

2 
Morn specifically,   if    A  :  X    -»   Z      is a  selected coordinatization 

function,    we put 
A       A       A 

(i)    x + y = z     iff    x + y = z; (Vector addition) 
A      A 

(11)    jx ■ y iff    j* x - y; (Scalar multiplication) 
A      A 

(ill)    x < y iff    x < y; (Partial ordering) 

(iv)     ||x||   -  |i|   + | j|; (Sum norm) 

(v)    «x» - Max(| i| ,J j| ), (Max norm) 

A 
Where x,y € X,    x - <i,j>,  and  i,j € Z. 

The  structure {X,+,*,<,   ||   ||,  « »J     is called  the cellular 

space,  where   the  conceptual   ingredients are,  respectively,  vector addition, 
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***l*f .nuUiphcaUon.   partial  uraorfn« „- •„.  (cfty bh)ck nor|ll) > ^ 

nuix-norm. 

Both norms induce a discrete  topology in  the cellular space    X., 

The  intended  interpretation of the elements  of    x    is  the retina „oi^ 

a geometric  location of the point information, which is of interest in 

input data.    Geometrically we can think of    X    as a  finite,  rectangular, 

two-dimensional array of congruent squares, whose coordinates are given' 

by a grid of pairs  of integers,   located at  their midpoints.    The advantage 

of defining    X    in  this way  lies  in the possibility of using a coordinate- 

free   (topological)  language,  and when necessary, we can carry over  the 

concepts  of vector calculus   to    X. 

When several    coordinization    functions   (sampling) are given,  one 

can order  them partially by the fineness or coarseness relation.    The 

finest    coordination . is usually that which is suitable  for capturing 

the ultimately relevant local  information concerning the gray level shape 

or color change.    Clearly, a  finer coordination function  leads   (at 

least potentially)  to a more complete description of a picture. 

The subsets  of    X    are subjected  to generalized vector operations 
such as 

Algebraic  sum: 

A + B =  [a + b|aeA and beB} . 

where    A.B c X. 

We shall not use  these operations  in this work since  other 

operations will play a  far more  important role.    The horizontal and 

vertical rectangular subsets of    X    (i.e..  planar intervals) are called 

windows; 
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A    is a window    iff    A = [a e X ]   x < a < y), where    x    and    y    are 

some cells  in    X.    Thus, windows are essentially two-dimensional  intervals. 

The empty window  is denoted by 0.     The set  of all windows Wind 

is partially ordered by inclusion.     In  fact,  it  forms a   finite distributive 

lattice with zero element 0, unit element X and with operations: 

Intersection: ,„ 

A A B = A n  B; 

Union: 

A V B = D {C e Wind [ A c C A B C C), 

where A,B e Wind. 

The window A V B denotes the smallest rectangle containing A and 

B. The lattice < Wind, 0, x, V, A > will be rhe basic structure in 

picture identification.  (A similar lattice is obtained by taking the 

convex subsets of X.) 

The choice of norms in X induces a special system of neighborhoods, 

suitable for developing the basic properties of continuous and 

proximal functions on X. 

For every natural number p we define the p- neighborhood (von 

Neuman template) of a cell x by 

N(x;p) = ly| l|x - y|| < pj. 

If we neglect  the effect of the picture  boundary,  a    p- neighbor- 

hood   forms a diamond shape cluster of cells about    x. 

Another system of    p-neighborhoods   (Moore templates)  is defined 

by the max-norm: 

M(x;p) = {y|   «x - y» < p}. 

These neighborhoods   form square windows about    x,   if we  forge; 



 ~. 

about the effect of the picture boundary. 

As pointed out in the introduction, our main interest will be 

in pictorial relationships such as neighboring, inside near, equidistant, 

perpendicular, overlap, above, etc., and in pictorial objects such as 

figure boundaries, regions, and the like. These are certain metric- 

topoloeical entities, definable in terms of the primitives of the 

U cellular space X. Theoretically one may think of a broader class of 

geometric entities (projective, affine, metrical, and topological), but 

this is an auxilliary issue now. We shall totally disregard at present 

the semantic relationships and semantic objects, induced by a particular 

object-world model. 

The starting point of a picture representation is a picture function 

j. p: x -> R, whose values are called gray levels.  In the case of colored 

pictures, the values  p(x)  for x e X are vectors, representing the 

intensity of light for a fixed system of colors. 

U The difficulty with the picture function lies in the fact that it 

is a point function, as opposed to an area or set function. We need a 

data structure, where the point information is usefully transformed into 

a local or areal information which is the only one we are interested in, 

now. 

In order  to achieve this, we associate with every restriction 

V. P|
A

    of the picture  function p, where    A    is a window in    X, a structure, 

carrying the desired   local  information.     But before we explain how can 

this be done, we shall  review some of the sheat-theoretic notions. 

Presheaves of Pictorial Structures of a Given Species 

What are presheaves and what are they good  for? These are  the 
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questions we  intend.to answer  in this section.    As   for  the  theoretical 

details,   the reader may consult Bredon  (I967).    First, we state  tho 

general definition of a presheaf and then we give a number of concrete 

examples of presheaves relevant   to picture  theory. 

Let    <E,  <>    be a  partially ordered  set.     Then by a  presh^f nf 

structures  of speri.j;  : JGMA on E we  shall mean a  pair of sets 

S = <lSa|   a € Ej,  ^  I   a <bj  > 

such  that for all    a.b.c - E  the properties displayed below are valid. 

(1) Sa    is a  structure of species SIGMA and     ßb    for    a < b    is 

a SIGMA-homomorphism    P^S^.    called the connectin.   (transition) 

mapping  from    S,    to S   . 
b a 

(2) ßb:Sa^Sa     is   the  identic SIGMA-homomorphism  (automorphism) 

on     S. 

(5)    a < b A b <c    => ßg = P3 o ß^. 

A presheaf on E will conveniently be denoted by S = fs -ßh 

The species SIGMA refers to the type of a structure which could be 

just a plain set, a set endowed with certain relations and/or operations, 

or anything that resembles a mathematical structure (group, vector 

space, automaton, etc.). The only point to be realized is that the 

structures in question should be of the same sort or type. The SIGMA- 

homomorphism may be defined in various ways, the simplest, perhaps, 

being the structure preserving mapping from the domain of one structure 

into the domain of the other. 

Before we launch ourselves into a more specialized study of sheaves, 

it seems useful to illustrate the definition of a presheaf by a couple 

of intended interpretations. This will hopefully help us to envisage 
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the picture  -  theoretic applications. 

One of  the  simplest  presheaves  is  the constant  oresh^f nf  .cts. 

Here    Sa « S    Is a  fixed set of elements and    |b    i« the  identity 

mapping on  the   fixed set    S. 

(a)    Presheaf of continuous  functions 

Let    X    be a  topological space.    For each    VCX    let    jL 

be  the set of all continuous  real-valued  functions    f:V - R,    and  for 

W c V    let    ^rSy -» Sw    be  the mapping which assigns  to each    f € S 

its domain restriction     f|w.    Then,  of course,     f|W € Sw,  .ince a 

0 restriction of a continuous mapping is again continuoua.    This con- 

struction gives a presheaf {Sv;{$    on the set of all subnet, of    X, 

partially ordered  by  inclusion.    We call  it  the presheaf of conHn..n.., 

, real-valued  functions  on    Ä, 

If the  topological attribute  "continuous" is  replaced  by "unifonnly 

continuous",   "proximally continuous",  "differentiable",   "analytic", etc., 

0 we get a whole   family of new presheaves on  the same space.    Moreover, 

we get  some other  presheaves  on    X    when we consider only a  s>stem of 

neighborhoods, e.g..    N - lN(x;p)|   x € X.  p > 0 J,  rather  than the set 

of all  subsets of    X. 

<b)    Presheaf of Histograms 

Consider a picture  function    p: X - k    together with the 

lattice of all windows < Wind,c > of the cellular space    X.    Assign to 

every window    W    a  set of histograms    Sw or more  precisely,  a  set  of 

distribution  functions  corresponding to a   family of random variables, 

characterizing certain  features  of the picture p. 

As connecting mappings    ^ , choose   for    Vc W    an appropriate 
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ttochMUc tfnifor—tion.   (stochastic astrlx) transforaint tha alawats 

Sw    into the olaaants of    Sy.    Th« prashaaf axiosis ara raadily varifiad. 

Tha structura    l^;^]     is a prashaaf, callad  tha araahaef of histor—. 

Again, we can uka the sysce« of squsre windows   N • (M(X|P)|K C X, p ^ O) 

end consider another presheaf of histograsis. 

(c)    Pre»heaf of Ceo«stric Mod.U 

Let    p: X   . R    be a picture  function together with the  lattice 

of windows    sWind, ^>of Che space    X.    Assign to every window a 

USMlllSLSS^ti   Su.   induced by the picture over   W.    The geowtric 

•Kjdel  is essentially a aet of figurea  (lines, circUs, etc.) together 

with the  figure attributes and their placaaent rulea. 

Tha connecting trinsforastions    j^: S^ ^ 8}f   are restrictions or 

in a «ore general situation,  they ara certain siailarity fu^ctiooa, 

assigning to every aleaent    S    a aost  sisiiUr aleaent   tram   g  .     in the 
V 

case of pictures with  local gradients, soaw other hasjaorphisM aay be 

of intereat. 

(d)     Freshesf ot  Feature Space» 

Let    p: X -* R    be a picture  function end  let    <Con,C > be 

the  lattice of convex subsets of    X.    Define    S^    for   W c Con    aa 

the  linear space generated by the  feature vectors associated with p/W 

via neasuras«nt, and  identify each    |!    „ 
"W     for    W C v    with a  linear 

i ran« format ion.    Then lSw;   |Jj     is a sMdal   for the presheaf axioaa. 

Several other  scene analysis concepts turn out  to have a 

«hcaf  - theoretic interpretation. 

Simply. a presheaf  is a   fonsal device which aaalgns to 

certain  local areas of a  topological  space a specific structure  in 

1H 



auch a «My chat «hanavar cvo araa« ara la tnclualoo ralactooahlp. 

tba aaaitMd ttructuraa ara la homemorfkim ralattoaahip. 

Tha raadar ahauld aaa by aow tha conaacitoa batwaan praahaavaa 

aad putur* airuciur«  idvntiricat ion by wtadswli«.    Oftaa a praabaal 

t an < I, S > baa a ralacivaly ata^la atructura "locally" about »vary 

foini act. 

A auftaatlva plctura of a praabaaf ovar a window In a 

callular ^aca la glvao balaw.  In Plg.%7.   It la l^ortant not to 

coafuaa tha praaboaf atructura ultb tha plctura function. 

rii.b? 
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fraqutntly m «i» not inc«r«tt«d in «11 «indowt of « MlluUr 

•Hct but r«ih«r ta • tubMC of window«.    Till» U ci.c («•« «b«« CIM 

i««iur« vlvatnt« «r« Urf« «IMU^I «ad w« do not MOI to ootor Into tbolr 

•tructuro.    In •Ituotiono 111M this, tho  following notion «pfoor» to 

be relo*«nt. 

Ut    I* 9 I   bo a partUlly ordorod aubaot of   < I. S >. 

Tbon tbo protboaf 

<(ija€l'). Uj | «SkAa, bcr)> 

ta called the raatrlction si   S    i2   I'    and  la daootad    Sit'. 

Tbut, tbo proabaaf atructura ta cooatdorod only owar aeaa point* of   I* 

Of ton aavaral praabaavoa ara of intaraat aa tba oaaa baa«   I. 

In tituationa Ilka tbat wa want to know bow to rolata üwa. 

U«   • • l^llj)    aad   T • (T#; ^)    b« two pr««bo«v«« o«   I 

ol tbo ««w «port«« SICm. 

Th«n by « bonoaorfbtMi 

Ott -T 

of on« gr««bMf Into «notbor wo thnll twan a  taally of Item bowaorpbl 

ft • (aj a C I) auch that  for all    atb C I: 

• s * ^ •«••!• ^1o s* 
Tba condition «bov« t« «xfUlnad «ugtatttvally by •tatlng tbat 

tba  following dtagraa oi  functlona It coHMitattva  for «11    « 5 bt 

•« 



Im !••• toiMl Mm, ih» «ay ei« •crwcwM u   t   «r« 

r«Ui«4 t*m to aotelcd to c«nw of il» •irvciur«« 1«   T.   m* MKIM 

!• lafortMi In ckt MMMIC« of tlccvr« IdMilflMilM.   Mi ulw   t 

•• « VcMtrlc" praaliMf «ai   T   ■• • «OTMCIC* or aVorU-w4ol<* 

prothMt «n^ crootUco tho ißamtrU laforMClo« of   S   loco • «orM- 

•otol  laforwcioo of   T. 

Ao polotod out, lo Mccoro-choorotlc opyllcocloM proolMovoo 

oro otoootUlly tMilict ol •cructuros o( cortot« •poclo«, lotorcoMMctoi 

kf troMfoTMiloM. Mfrooslot eooUooley. 

Mlib «vory ^rookoof   S   off tfoclot tlOMI oo o kooo   < I. S > 

m ooooeUeo two l^orcoot •trvccuros off clw mm opocloo licm. 

provldod chat cortoto oaUtooco cooilcioM oro Mt.    loffoi« M dkm hm 

cklt It 4OM( CM OMtllory ooilMo oro lo oHor. 

mm\y, cfco 4lrmct »rnduet    ttod S#   «od ih. dlroct um 

Tcf-'    "    '•   *** PUin **"* ****    oSf *•    U iml *** C-rt#iU* 
product of tha MCS   t     ood   SM I       U cko disjoint mim off choso Mt«. 

O C I* 

ClMn « prnthMf    t   off fpocloo   ttcm thoo by chn —ction 

tftoJocclM or invorio llalc) off   •   M Man tho itruccuro     focc (t) • 

(S C Pro« ta | V o.b (o S ^ •> »^ (o^) - aj}. 

Thuo,    Socc(S)   of o lubncmccura off cho dirocc produce 

Prod •    (providod that 1c oxlatt). 
o 

ClMn a pratbMff   S   off npociaa SIGNA thnn by tha co—ctioo 

«loducclw or dlroct  Itoit) off   S   M uodortuad tha ttruetur« 

CoMct(t) • SM ty ■ . 

1.. 



**f   *• ta •(<•,•> I MgJ   49mof tu« Utm MM of ito 

fMlty     ItJ    far   «a   Mi   •    U Uw «MIIMI ^VIMUM« raUiloa 

o« th« ilrvct  MM. conMlntM ihm binary nUttom •; 

«Itk    Mi^    Mi    ICS^. 

T*M, Co4MK(t) I« « «iioiUni nam| of UM ilract •«■ 

•M 1^    (pravliM that   11 MUU). 

Cft«M • pratkMf   t,    it can to MOMI IIMI If   «V"   |S « n,,! 

• tMMt   Of     I,      Ibo«   ihO   iMMTflliM 

1      *    SMt(S) 
a 

hold*  Mi «iM 

I« othor «orit. UM •imctur« SMK(t) CM I« liontlfUi «rlcli UM •traccor« 

i#, «ttliMi to (ho flrtt alMMt o to I.    to •ffllcotloas. SocK(t) 

corrotfonit to tho «tructur* of particuUr tMturo «iMtots. 

IHMlly. If   o' la a im alMaat of I, thM 

1#.*   coaoct(i) 

aai 

«it -»T   •>aft» i ^^ -•T#. 

Ai«io. CoMct t) can ho iiaitüfloi with tho ttructur*   i ,, aaat«Mi 

to tho laat aloMot   a#    la   I.    la a^licatlcaa. Coaoct(t) corrot^ooit 

to tho structure of tho textured region. 

BlilVOt   Of   Pictorial   mat—   li  •   C1**a  fmelmm 

Shoavoo ar* proshcovot Mtlofytnt aiiitlonot «XIOM.    A 

•irfinmon of a ahaaf In Its full gonarallty ro^ulro« oavoral adiltlonol 

U6 



•elMic«ltcU«.   Mi tlMll pn—nt itMrvfor« Mek • d#rioit ion w^uh ia 

tr— ot «b.irccc CMC«HU«I coMtrtictloM. 0Mwral •oouah, Md y*t 

•Kill r«U«sat  tn ptciw M«ljr«U. 

UK < Via*, £ > to KlM Uttlc« of wiaämn owr UM MlluUr 

•PM«   I.   C4Ml4«r a pr««lMaf (1^. §£]    mmt UM «üidM tytKM 

< «iai, C >.   TIMS tfelt ffh—t it c«U«4 • rf>—f if for «ay faally 

•f wlaioiM    (MjJ J . ,    .«eh    UMC   Ifj C If -.» • Ü^ m ^ 

UM followlat iMMrfklaa Is valid; 

i 

Tku«, laoaaly »pMlilat. • UM«f It • •yttM of «tructurM ovar 

a lactlca of wladoiM, whttm oach ttructur« rapraaaau oaa particular 

taatur«. 

DiMlly, m call praskaat    l^. 9^]    • coihaaf if for aay 

faally ot wiadmn llfjj m l    MMh Uac   If C «»! - « l^ij , l 

UM follovlat iMaorpliUa la «alid: 

SUlf    ^   CoMet (fK^}). 
i    * 

A aor« dlract definition of a shaaf %#lth • fairly claar plctur«- 

chaaratlc lacarpratatloa Is glvao balow. 

Coaaldar • praalMaf   t • (f?; jj)    of ■tmcturat ovar a 

callular tpaca   l( i.a.» oo UM lactlca of cubaati   < tubCX), c >. 

Ttiao   t    la a ihacf ovar    X    procItaly «h.*n  for any faally    IV    |   |<l) 

of aabaata of   X   alth    v - -j V      UM folloali« two condlcloat ara 
i    l 

aatlaftedi 

l».9 



(I) 

(2) 

vi.jliJJ   v (.t) - BJJ nv (. )| •>     iVk (IJ (i) .   K 
J        i  J k 

Tht com'iiloo (I) Mys chat If the ttructurc mlmmmnt»    •   «re 

iMÜll identical, then th«y an alto tlfifclll l««.ntic«l.    Iliat It, 

•UMIUB «ra untqiMly dctcraiiwd by local 6»i*. 

Th« cooditloo (?) My« that  If «• h«v«  local data which ara 

co^atibla. thay actually Vtch lognhcr" to for* aloh«| data. 

Thia alght appoar aa a parhapt unduly aophiaticatad «My of looking 

at  tha windcMing procaaa in which by overlapping windowint wa ara 

capable  to racevar  tha unique structure of the picture  fro« several 

local structures.    The definition of a ahaaf trill turn out to be a if^ 

■ethod for taatura region  identification. 

The picture - theoretic substance of sheaves  is this.    A sheaf 

is essentially a systesi of "local coafriciantM.    In picture-theoretic 

applications m   start by assuaing that a picture has certain  local 

pictorial  properties which are captured by a structure    8V   of certain 

species.    We then express thaae properties in tensa of tha properties 

o* the structure shaaf    s    over a picture region.    Finally, we app y 

the theory of sheaves to deduce certain global propartiea of tha r^ctura. 

Consequently,  the laportance of sheaves  in scene analysis is sUply 
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In giviot rcUtlons between local and global propartiaa of a «cane. 
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